On the infinite Borwein product raised to a positive real power

<jats:p>In this paper, we study properties of the coefficients appearing in the <jats:italic>q</jats:italic>-series expansion of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\prod _{n\ge 1}[(1-q^n)/(1-q^{pn})]^\delta $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mo>∏</mml:mo> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>/</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:msup> <mml:mi>q</mml:mi> <mml:mrow> <mml:mi>pn</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mi>δ</mml:mi> </mml:msup> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>, the infinite Borwein product for an arbitrary prime <jats:italic>p</jats:italic>, raised to an arbitrary positive real power <jats:inline-formula><jats:alternatives><jats:tex-math>$$\delta $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>δ</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>. We use the Hardy–Ramanujan–Rademacher circle method to give an asymptotic formula for the coefficients. For <jats:inline-formula><jats:alternatives><jats:tex-math>$$p=3$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> we give an estimate of their growth which enables us to partially confirm an earlier conjecture of the first author concerning an observed sign pattern of the coefficients when the exponent <jats:inline-formula><jats:alternatives><jats:tex-math>$$\delta $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>δ</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> is within a specified range of positive real numbers. We further establish some vanishing and divisibility properties of the coefficients of the cube of the infinite Borwein product. We conclude with an Appendix presenting several new conjectures on precise sign patterns of infinite products raised to a real power which are similar to the conjecture we made in the <jats:inline-formula><jats:alternatives><jats:tex-math>$$p=3$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> case.</jats:p>

[1]  Walter Van Assche,et al.  A tribute to Dick Askey , 2015, J. Approx. Theory.

[2]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[3]  Bruce C. Berndt,et al.  Number theory in the spirit of Ramanujan , 2006 .

[4]  G. Bhatnagar,et al.  A Partial Theta Function Borwein Conjecture , 2019, Trends in Mathematics.

[5]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[6]  Leon M. Hall,et al.  Special Functions , 1998 .

[7]  George E. Andrews,et al.  On a Conjecture of Peter Borwein , 1995, J. Symb. Comput..

[8]  H. Rademacher,et al.  On the Fourier Coefficients of Certain Modular Forms of Positive Dimension , 1938 .

[9]  Shane Chern Asymptotics for the Taylor coefficients of certain infinite products , 2019, The Ramanujan Journal.

[10]  Jonathan M. Borwein,et al.  Some cubic modular identities of Ramanujan , 1994 .

[11]  S. Cooper Ramanujan's Theta Functions , 2017 .

[12]  Hans Rademacher,et al.  Topics in analytic number theory , 1973 .

[13]  Shane Chern Asymptotics for the Fourier coefficients of eta-quotients , 2018, Journal of Number Theory.

[14]  Jonathan M. Borwein,et al.  A cubic counterpart of Jacobi’s identity and the AGM , 1991 .

[15]  H. Simpson,et al.  Some monotonicity results for ratios of modified Bessel functions , 1984 .

[16]  Dennis Stanton,et al.  OPEN POSITIVITY CONJECTURES FOR INTEGER PARTITIONS , 2012 .

[17]  Chen Wang,et al.  An analytic proof of the Borwein Conjecture , 2019, Advances in Mathematics.

[18]  Hans Rademacher,et al.  On the Expansion of the Partition Function in a Series , 1943 .

[19]  G. Hardy,et al.  Asymptotic formulae in combinatory analysis , 1918 .

[20]  Sho Iseki,et al.  A Partition Function with Some Congruence Condition , 1959 .

[21]  S. Iseki Some Transformation Equations in the Theory of Partitions , 1958 .