Elgot theories: a new perspective on the equational properties of iteration

Bloom and ??sik's concept of iteration theory summarises all equational properties that iteration has in common applications, for example, in domain theory, where to every system of recursive equations, the least solution is assigned. This paper shows that in the coalgebraic approach to iteration, the more appropriate concept is that of a functorial iteration theory (called Elgot theory). These theories have a particularly simple axiomatisation, and all well-known examples of iteration theories are functorial. Elgot theories are proved to be monadic over the category of sets in context (or, more generally, the category of finitary endofunctors of a locally finitely presentable category). This demonstrates that functoriality is an equational property from the perspective of sets in context. In contrast, Bloom and ??sik worked in the base category of signatures rather than sets in context, and there iteration theories are monadic but Elgot theories are not. This explains why functoriality was not included in the definition of iteration theories.

[1]  Jerzy Tiuryn Unique Fixed Points Vs. Least Fixed Points , 1980, Theor. Comput. Sci..

[2]  Esfandiar Haghverdi,et al.  A categorical approach to linear logic, geometry of proofs and full completeness. , 2000 .

[3]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[4]  Jirí Adámek,et al.  Elgot Theories: A New Perspective of Iteration Theories (Extended Abstract) , 2009, MFPS.

[5]  Jirí Adámek,et al.  Elgot Algebras: (Extended Abstract) , 2006, MFPS.

[6]  S. Lack,et al.  Introduction to extensive and distributive categories , 1993 .

[7]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[8]  C. C. Elgot Monadic Computation And Iterative Algebraic Theories , 1982 .

[9]  Lawrence S. Moss,et al.  Recursion and Corecursion Have the Same Equational Logic , 2003, MFPS.

[10]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[11]  Jirí Adámek,et al.  Semantics of Higher-Order Recursion Schemes , 2009, CALCO.

[12]  Stefan Milius Completely iterative algebras and completely iterative monads , 2005, Inf. Comput..

[13]  Jiří Adámek,et al.  Free algebras and automata realizations in the language of categories , 1974 .

[14]  Stefan Milius,et al.  Terminal coalgebras and free iterative theories , 2006, Inf. Comput..

[15]  Stephen Lack On the monadicity of finitary monads , 1999 .

[16]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[17]  Alexandra Silva,et al.  An Algebra for Kripke Polynomial Coalgebras , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[18]  Jean Benabou,et al.  Structures algébriques dans les catégories , 1968 .

[19]  Peter Aczel,et al.  Infinite trees and completely iterative theories: a coalgebraic view , 2003, Theor. Comput. Sci..

[20]  Jirí Adámek,et al.  What Are Iteration Theories? , 2007, MFCS.

[21]  Masahito Hasegawa,et al.  Models of Sharing Graphs , 1999, Distinguished Dissertations.

[22]  Zoltán Ésik,et al.  Independence of the Equational Axioms for Iteration Theories , 1988, J. Comput. Syst. Sci..

[23]  S. Lane Categories for the Working Mathematician , 1971 .

[24]  Jirí Adámek,et al.  Iterative reflections of monads , 2010, Math. Struct. Comput. Sci..

[25]  Stefan Milius,et al.  ITERATIVE ALGEBRAS: HOW ITERATIVE ARE THEY? , 2008 .

[26]  Gordon D. Plotkin,et al.  Complete axioms for categorical fixed-point operators , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[27]  J. Lambek A fixpoint theorem for complete categories , 1968 .

[28]  C. C. Elgot,et al.  On the algebraic structure of rooted trees , 1978 .

[29]  Jirí Adámek,et al.  Equational properties of iterative monads , 2010, Inf. Comput..

[30]  Susanna Ginali,et al.  Regular Trees and the Free Iterative Theory , 1979, J. Comput. Syst. Sci..

[31]  Ross Street,et al.  Traced monoidal categories , 1996 .

[32]  Stephen L. Bloom,et al.  On the Algebraic Atructure of Rooted Trees , 1978, J. Comput. Syst. Sci..

[33]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[34]  Jirí Adámek,et al.  Iterative algebras at work , 2006, Mathematical Structures in Computer Science.

[35]  真人 長谷川 Models of sharing graphs : a categorical semantics of let and letrec , 1999 .

[36]  Gordon D. Plotkin,et al.  Abstract syntax and variable binding , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[37]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[38]  Lawrence S. Moss Parametric corecursion , 2001, Theor. Comput. Sci..

[39]  M. Barr Coequalizers and free triples , 1970 .