Vernier acuity with compound gratings: the whole is equal to the better of its parts

[1]  D. Levi,et al.  Vernier acuity with plaid masks: the role of oriented filters in vernier acuity , 1997, Vision Research.

[2]  D. Whitaker,et al.  Disentangling the Role of Spatial Scale, Separation and Eccentricity in Weber's Law for Position , 1997, Vision Research.

[3]  Dennis M. Levi,et al.  Position acuity with opposite-contrast polarity features: Evidence for a nonlinear collector mechanism for position acuity? , 1996, Vision Research.

[4]  D M Levi,et al.  Spatial alignment across gaps: contributions of orientation and spatial scale. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  G. Legge,et al.  Discrimination of compound gratings: Spatial-frequency channels or local features? , 1995, Vision Research.

[6]  V. Lakshminarayanan,et al.  Performance on three-point vernier acuity targets as a function of age. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  S. Klein,et al.  Amblyopic and peripheral vernier acuity: a test-pedestal approach , 1994, Vision Research.

[8]  Robert F. Hess,et al.  The coding of spatial position by the human visual system: Effects of spatial scale and retinal eccentricity , 1994, Vision Research.

[9]  D. Levi,et al.  Orientation, masking, and vernier acuity for line targets , 1993, Vision Research.

[10]  Dennis M. Levi,et al.  Visibility, timing and vernier acuity , 1993, Vision Research.

[11]  Dennis M. Levi,et al.  Visibility, luminance and vernier acuity , 1993, Vision Research.

[12]  D. Whitaker What part of a vernier stimulus determines performance? , 1993, Vision Research.

[13]  Dennis M. Levi,et al.  “Weber's law” for position: the role of spatial frequency and contrast , 1992, Vision Research.

[14]  D. Whitaker,et al.  Interaction of spatial frequency and separation in vernier acuity , 1991, Vision Research.

[15]  Frank L. Kooi,et al.  Spatial localization across channels , 1991, Vision Research.

[16]  Bart Farell,et al.  Vernier acuity: Effects of chromatic content, blur and contrast , 1991, Vision Research.

[17]  D M Levi,et al.  Binocular summation in vernier acuity. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[18]  J. Koenderink,et al.  Differential spatial displacement discrimination thresholds for Gabor patches , 1988, Vision Research.

[19]  D. Regan,et al.  Opponent model for line interval discrimination: Interval and vernier performance compared , 1987, Vision Research.

[20]  J. Koenderink,et al.  Scale invariant features of differential spatial displacement discrimination , 1987, Vision Research.

[21]  R. F. Hess,et al.  Evidence for spatially local computations underlying discrimination of periodic patterns in fovea and periphery , 1987, Vision Research.

[22]  B. Skottun,et al.  Effects of contrast and spatial frequency on vernier acuity , 1987, Vision Research.

[23]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[24]  Hugh R. Wilson,et al.  Responses of spatial mechanisms can explain hyperacuity , 1986, Vision Research.

[25]  Arthur Bradley,et al.  Is reduced vernier acuity in amblyopia due to position, contrast or fixation deficits? , 1985, Vision Research.

[26]  M. J. Wright,et al.  The relationship of displacement thresholds for oscillating gratings to cortical magnification, spatiotemporal frequency and contrast , 1985, Vision Research.

[27]  R. W. Klopfenstein,et al.  Spatial-Frequency Model for Hyperacuity , 1985 .

[28]  S. Klein,et al.  Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[29]  D. Regan,et al.  Postadaptation orientation discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[30]  R. Watt,et al.  Spatial filters and the localization of luminance changes in human vision , 1984, Vision Research.

[31]  D. Badcock How do we discriminate relative spatial phase? , 1984, Vision Research.

[32]  R. J. Watt,et al.  Spatial frequency interference effects and interpolation in vernier acuity , 1984, Vision Research.

[33]  D. Badcock Spatial phase or luminance profile discrimination? , 1984, Vision Research.

[34]  J M Enoch,et al.  The resistance of selected hyperacuity configurations to retinal image degradation. , 1984, Investigative ophthalmology & visual science.

[35]  R. Watt,et al.  The recognition and representation of edge blur: Evidence for spatial primitives in human vision , 1983, Vision Research.

[36]  R. J. Watt,et al.  Mechanisms responsible for the assessment of visual location: Theory and evidence , 1983, Vision Research.

[37]  G Westheimer,et al.  Editorial: Visual acuity and hyperacuity. , 1975, Investigative ophthalmology.

[38]  N. Graham,et al.  Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channels models. , 1971, Vision research.

[39]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[40]  E. Ludvigh Direction sense of the eye. , 1953, American journal of ophthalmology.

[41]  D. Foster,et al.  Thresholds From Psychometric Functions : Superiority of Bootstrap to Incremental and Probit Variance Estimators , 1991 .

[42]  M J Morgan,et al.  Vernier acuity predicted from changes in the light distribution of the retinal image. , 1985, Spatial vision.