Search for patterns of functional specificity in the brain: A nonparametric hierarchical Bayesian model for group fMRI data

Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with previously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli.

[1]  Polina Golland,et al.  Nonparametric hierarchical Bayesian model for functional brain parcellation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[2]  A. Dale,et al.  Late Onset of Anterior Prefrontal Activity during True and False Recognition: An Event-Related fMRI Study , 1997, NeuroImage.

[3]  Jean-Baptiste Poline,et al.  Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses , 2007, NeuroImage.

[4]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[5]  Michael Erb,et al.  Dynamical Cluster Analysis of Cortical fMRI Activation , 1999, NeuroImage.

[6]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[7]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[8]  Polina Golland,et al.  Discovering structure in the space of fMRI selectivity profiles , 2010, NeuroImage.

[9]  R Baumgartner,et al.  A hierarchical clustering method for analyzing functional MR images. , 1999, Magnetic resonance imaging.

[10]  R. Malach,et al.  Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems , 2008, Neuropsychologia.

[11]  Tom Minka,et al.  Automatic Choice of Dimensionality for PCA , 2000, NIPS.

[12]  N. Kanwisher,et al.  Location and spatial profile of category‐specific regions in human extrastriate cortex , 2006, Human brain mapping.

[13]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[14]  Olivier D. Faugeras,et al.  Feature Detection in fMRI Data: The Information Bottleneck Approach , 2003, MICCAI.

[15]  R W Cox,et al.  Real‐time 3D image registration for functional MRI , 1999, Magnetic resonance in medicine.

[16]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[17]  R. L. Somorjai,et al.  EROICA: exploring regions of interest with cluster analysis in large functional magnetic resonance imaging data sets , 2003 .

[18]  R Baumgartner,et al.  Fuzzy clustering of gradient‐echo functional MRI in the human visual cortex. Part I: Reproducibility , 1997, Journal of magnetic resonance imaging : JMRI.

[19]  Jim Pitman,et al.  Poisson–Dirichlet and GEM Invariant Distributions for Split-and-Merge Transformations of an Interval Partition , 2002, Combinatorics, Probability and Computing.

[20]  B. Biswal,et al.  Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. , 1999, Journal of computer assisted tomography.

[21]  B. Schölkopf,et al.  Hierarchical Dirichlet Processes with Random Effects , 2007 .

[22]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[23]  David J McGonigle,et al.  Variability in FMRI : A Re-Examination of Intersession , 2022 .

[24]  L. K. Hansen,et al.  Feature‐space clustering for fMRI meta‐analysis , 2001, Human brain mapping.

[25]  R Baumgartner,et al.  Comparison of two exploratory data analysis methods for fMRI: fuzzy clustering vs. principal component analysis. , 2000, Magnetic resonance imaging.

[26]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[27]  L. K. Hansen,et al.  On Clustering fMRI Time Series , 1999, NeuroImage.

[28]  J B Poline,et al.  Joint detection-estimation of brain activity in functional MRI: a Multichannel Deconvolution solution , 2005, IEEE Transactions on Signal Processing.

[29]  W. Eric L. Grimson,et al.  Tractography segmentation using a hierarchical Dirichlet processes mixture model , 2011, NeuroImage.

[30]  C. Windischberger,et al.  Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis. , 1998, Magnetic resonance imaging.

[31]  Jean-Baptiste Poline,et al.  Bayesian estimation of the hemodynamic response function in functional MRI , 2002 .

[32]  S. Ruan,et al.  A multistep Unsupervised Fuzzy Clustering Analysis of fMRI time series , 2000, Human brain mapping.

[33]  W. Eric L. Grimson,et al.  Tractography Segmentation Using a Hierarchical Dirichlet Processes Mixture Model , 2009, IPMI.

[34]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[35]  N. Kanwisher Functional specificity in the human brain: A window into the functional architecture of the mind , 2010, Proceedings of the National Academy of Sciences.

[36]  Olivier D. Faugeras,et al.  Feature characterization in fMRI data: the Information Bottleneck approach , 2004, Medical Image Anal..

[37]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[38]  P. Boesiger,et al.  A new correlation‐based fuzzy logic clustering algorithm for FMRI , 1998, Magnetic resonance in medicine.

[39]  Thomas Hofmann,et al.  A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation , 2007 .

[40]  Joachim M. Buhmann,et al.  Stability-Based Validation of Clustering Solutions , 2004, Neural Computation.

[41]  Jean-Francois Mangin,et al.  High Level Group Analysis of FMRI Data Based on Dirichlet Process Mixture Models , 2007, IPMI.

[42]  Richard B. Buxton,et al.  Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: Implications for BOLD-fMRI , 2008, NeuroImage.

[43]  Claus Svarer,et al.  Cluster analysis of activity‐time series in motor learning , 2002, Human brain mapping.

[44]  A M Dale,et al.  Estimation and detection of event‐related fMRI signals with temporally correlated noise: A statistically efficient and unbiased approach , 2000, Human brain mapping.

[45]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[46]  Russell A. Epstein,et al.  Where Am I Now? Distinct Roles for Parahippocampal and Retrosplenial Cortices in Place Recognition , 2007, The Journal of Neuroscience.

[47]  Mark W. Woolrich,et al.  Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models , 2009, NeuroImage.

[48]  Kai-Hsiang Chuang,et al.  Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy C-means , 1999, IEEE Transactions on Medical Imaging.

[49]  Yee Whye Teh,et al.  Collapsed Variational Inference for HDP , 2007, NIPS.

[50]  T. Sejnowski,et al.  Human Brain Mapping 6:368–372(1998) � Independent Component Analysis of fMRI Data: Examining the Assumptions , 2022 .

[51]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[52]  Bertrand Thirion,et al.  A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI , 2008, NeuroImage.

[53]  R Baumgartner,et al.  Fuzzy clustering of gradient‐echo functional MRI in the human visual cortex. Part II: Quantification , 1997, Journal of magnetic resonance imaging : JMRI.

[54]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[55]  Charles R. G. Guttmann,et al.  Functional MRI of auditory verbal working memory: long-term reproducibility analysis , 2004, NeuroImage.

[56]  T A Carpenter,et al.  Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains , 2001, Human brain mapping.

[57]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[58]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[59]  S. Petersen,et al.  Characterizing the Hemodynamic Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain Activity Based on Relative Timing , 2000, NeuroImage.

[60]  Ewald Moser,et al.  Explorative signal processing in functional MR imaging , 1999, Int. J. Imaging Syst. Technol..

[61]  N. Kanwisher,et al.  The fusiform face area: a cortical region specialized for the perception of faces , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[62]  Polina Golland,et al.  Detection of Spatial Activation Patterns as Unsupervised Segmentation of fMRI Data , 2007, MICCAI.

[63]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.