A multidisciplinary study of iron transport and storage in the marine green alga Tetraselmis suecica.

[1]  M. Montero,et al.  Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting , 2011, Journal of Applied Phycology.

[2]  N. Keren,et al.  The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. , 2011, Environmental microbiology.

[3]  F. Bux,et al.  Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production , 2011 .

[4]  H. Weger,et al.  Plasma membrane ferric reductase activity of iron-limited algal cells is inhibited by ferric chelators , 2010, BioMetals.

[5]  H. Weger,et al.  High stability ferric chelates result in decreased iron uptake by the green alga Chlorella kessleri owing to decreased ferric reductase activity and chelation of ferrous iron , 2009 .

[6]  Mary Lou Guerinot,et al.  Iron uptake and transport in plants: the good, the bad, and the ionome. , 2009, Chemical reviews.

[7]  E. L. Connolly,et al.  Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases , 2009 .

[8]  S. Merchant,et al.  FER1 and FER2 Encoding Two Ferritin Complexes in Chlamydomonas reinhardtii Chloroplasts Are Regulated by Iron , 2008, Genetics.

[9]  M. Guerinot,et al.  Mining iron: Iron uptake and transport in plants , 2007, FEBS letters.

[10]  E. Shimoni,et al.  Effects of Iron Deficiency on Iron Binding and Internalization into Acidic Vacuoles in Dunaliella salina1[W][OA] , 2007, Plant Physiology.

[11]  K. Kovács,et al.  Mössbauer study of iron uptake in cucumber root , 2007 .

[12]  M. Maeshima,et al.  Vacuolar transporters and their essential role in plant metabolism. , 2006, Journal of experimental botany.

[13]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[14]  C. Curie,et al.  Iron transport and signaling in plants. , 2003, Annual review of plant biology.

[15]  P. Bauer,et al.  Gene networks involved in iron acquisition strategies in plants , 2003 .

[16]  I. I. Ivanov,et al.  Accumulation of Ferrous Iron in Chlamydomonas reinhardtii. Influence of CO2 and Anaerobic Induction of the Reversible Hydrogenase1 , 2003, Plant Physiology.

[17]  E. Dassa,et al.  The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. , 2001, Research in microbiology.

[18]  W. Köster ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. , 2001, Research in microbiology.

[19]  H. Yamada,et al.  Solvent Effect on Ion-pair Extraction of 2-(2-Pyridylazo)-1-naphthol-4-sulfonate Anion with Solvated Hydroxonium Ion Using Alcohols and 1-Octanol/Octane Mixed Solvents , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[20]  Xiaoyun Liu,et al.  Responses of the macroalga Gracilaria tenuistipitata var. liui (Rhodophyta) to iron stress , 2000, Journal of Applied Phycology.

[21]  V. Schünemann,et al.  Structure and dynamics of biomolecules studied by Mössbauer spectroscopy , 2000 .

[22]  A. Zamir,et al.  Iron Uptake by the Halotolerant Alga Dunaliella Is Mediated by a Plasma Membrane Transferrin* , 1998, The Journal of Biological Chemistry.

[23]  C. Carrano,et al.  Transition Metals in Microbial Metabolism , 1997 .

[24]  R. Thauer,et al.  Characterization of a 45-kDa flavoprotein and evidence for a rubredoxin, two proteins that could participate in electron transport from H2 to CO2 in methanogenesis in Methanobacterium thermoautotrophicum. , 1995, European journal of biochemistry.

[25]  T. Shinada,et al.  Biosynthesis of Phytosiderophores, Mugineic Acids, Associated with Methionine Cycling (*) , 1995, The Journal of Biological Chemistry.

[26]  B. Matzanke,et al.  The mobile ferrous iron pool in Escherichia coli is bound to a phosphorylated sugar derivative , 1995, Biometals.

[27]  T. Leisinger,et al.  Purification and structural characterization of a flavoprotein induced by iron limitation in Methanobacterium thermoautotrophicum Marburg , 1995, Journal of bacteriology.

[28]  A. Trautwein,et al.  Mössbauer and EXAFS studies of bacterioferritin fromStreptomyces olivaceus , 1994 .

[29]  F. Frolow,et al.  Structure of a unique twofold symmetric haem-binding site , 1994, Nature Structural Biology.

[30]  N. Ivanova,et al.  High-affinity siderophore-mediated iron-transport system in the green alga Scenedesmus incrassatulus , 1994, Planta.

[31]  Elizabeth C. Theil,et al.  Crystallization and structural analysis of bullfrog red cell L‐subunit ferritins , 1994, Proteins.

[32]  K. Raymond Recognition and transport of natural and synthetic siderophores by microbes , 1994 .

[33]  D. Hutchins,et al.  Interactive influences of bioactive trace metals on biological production in oceanic waters , 1991 .

[34]  D. King,et al.  Spectrophotometric determination of iron(II) in seawater at nanomolar concentrations , 1991 .

[35]  W. V. Shaw,et al.  Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts , 1991, Nature.

[36]  F. Morel,et al.  Distinguishing between extra‐ and intracellular iron in marine phytoplankton. , 1989 .

[37]  G. Winkelmann,et al.  Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus , 1987, Journal of bacteriology.

[38]  B. Halliwell,et al.  Free radicals in biology and medicine , 1985 .

[39]  D. Rice,et al.  Ferritin: design and formation of an iron-storage molecule. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  R. Andersen,et al.  Prorocentrin: An Extracellular Siderophore Produced by the Marine Dinoflagellate Prorocentrum minimum , 1983, Science.

[41]  S. Manley Iron Uptake and Translocation by Macrocystis pyrifera. , 1981, Plant physiology.

[42]  L. Rodolfi,et al.  Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor , 2009, Biotechnology and bioengineering.

[43]  K. Kovács,et al.  Investigation of iron pools in cucumber roots by Mössbauer spectroscopy: direct evidence for the Strategy I iron uptake mechanism , 2008, Planta.

[44]  R. Andersen,et al.  Algal culturing techniques , 2005 .

[45]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[46]  V. Römheld,et al.  Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. , 1986, Plant physiology.

[47]  M. Gibbs A simple method for the rapid determination of iron in natural waters , 1979 .