Computing Probabilistic Queries in the Presence of Uncertainty via Probabilistic Automata

The emergence of uncertainty as an inherent aspect of RDF and linked data has spurred a number of works of both theoretical and practical interest These works aim to incorporate such information in a meaningful way in the computation of queries. In this paper, we propose a framework of query evaluation in the presence of uncertainty, based on probabilistic automata, which are simple yet efficient computational models. We showcase this method on relevant examples, where we show how to construct and exploit the convenient properties of such automata to evaluate RDF queries with adjustable cutoff. Finally, we present some directions for further investigation on this particular line of research, taking into account possible generalizations of this work.

[1]  Pablo Barceló,et al.  Querying Regular Graph Patterns , 2014, JACM.

[2]  Dan Suciu,et al.  Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.

[3]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[4]  Azaria Paz,et al.  Introduction to Probabilistic Automata , 1971 .

[5]  Olaf Hartig,et al.  An Overview on Execution Strategies for Linked Data Queries , 2013, Datenbank-Spektrum.

[6]  Xin Wang,et al.  Context-Free Path Queries on RDF Graphs , 2015, SEMWEB.

[7]  Hong Fang,et al.  pSPARQL: A Querying Language for Probabilistic RDF (Extended Abstract) , 2016, SEMWEB.

[8]  Jian Pei,et al.  Probabilistic path queries in road networks: traffic uncertainty aware path selection , 2010, EDBT '10.

[9]  Patrick Valduriez,et al.  Efficient Evaluation of SUM Queries over Probabilistic Data , 2013, IEEE Transactions on Knowledge and Data Engineering.

[10]  Xiang Lian,et al.  Quality-Aware Subgraph Matching Over Inconsistent Probabilistic Graph Databases , 2016, IEEE Transactions on Knowledge and Data Engineering.

[11]  Dan Suciu,et al.  Optimizing regular path expressions using graph schemas , 1998, Proceedings 14th International Conference on Data Engineering.

[12]  A. Prasad Sistla,et al.  Similarity based retrieval from sequence databases using automata as queries , 2002, CIKM '02.

[13]  Volker Tresp,et al.  Querying Factorized Probabilistic Triple Databases , 2014, SEMWEB.

[14]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[15]  Joerg Schoenfisch Querying Probabilistic Ontologies with SPARQL , 2014, GI-Jahrestagung.

[16]  Lei Chen,et al.  On Uncertain Graphs Modeling and Queries , 2015, Proc. VLDB Endow..

[17]  Chengfei Liu,et al.  Query Evaluation on Probabilistic RDF Databases , 2009, WISE.

[18]  Egon L. Willighagen,et al.  Emerging practices for mapping and linking life sciences data using RDF - A case series , 2012, J. Web Semant..

[19]  Konstantinos Giannakis,et al.  Web Mining to Create Semantic Content: A Case Study for the Environment , 2012, AIAI.

[20]  Xin Wang,et al.  Answering provenance-aware regular path queries on RDF graphs using an automata-based algorithm , 2014, WWW '14 Companion.

[21]  Theodore Andronikos,et al.  Querying Linked Data and Büchi Automata , 2014, 2014 9th International Workshop on Semantic and Social Media Adaptation and Personalization.

[22]  Theodore Andronikos,et al.  Associating ω-automata to path queries on Webs of Linked Data , 2016, Eng. Appl. Artif. Intell..