Influence of Body Waves, Instrumentation Resonances, and Prior Assumptions on Rayleigh Wave Ellipticity Inversion for Shallow Structure at the InSight Landing Site

[1]  D. Alazard,et al.  Flexible Mode Modelling of the InSight Lander and Consequences for the SEIS Instrument , 2018, Space Science Reviews.

[2]  Raphaël F. Garcia,et al.  A Numerical Model of the SEIS Leveling System Transfer Matrix and Resonances: Application to SEIS Rotational Seismology and Dynamic Ground Interaction , 2018, Space Science Reviews.

[3]  M. Golombek,et al.  A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site , 2018, Space Science Reviews.

[4]  N. Murdoch,et al.  Near-Field Seismic Propagation and Coupling Through Mars’ Regolith: Implications for the InSight Mission , 2018, Space Science Reviews.

[5]  A. Trebi-Ollennu,et al.  Geology and Physical Properties Investigations by the InSight Lander , 2018, Space Science Reviews.

[6]  R. Scarpa,et al.  Site Effects in the Pollino Region from the HVSR and Polarization of Seismic Noise and Earthquakes , 2018 .

[7]  R. Lorenz,et al.  Viking‐2 Seismometer Measurements on Mars: PDS Data Archive and Meteorological Applications , 2017 .

[8]  M. Golombek,et al.  Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars , 2017 .

[9]  Raphaël F. Garcia,et al.  Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts , 2017 .

[10]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[11]  Bernhard Rebele,et al.  First Results of the ROBEX Analogue Mission Campaign: Robotic Deployment of Seismic Networks for Future Lunar Missions , 2017 .

[12]  David Mimoun,et al.  The Noise Model of the SEIS Seismometer of the InSight Mission to Mars , 2017 .

[13]  J. Tromp,et al.  Analysis of Regolith Properties Using Seismic Signals Generated by InSight’s HP3 Penetrator , 2017 .

[14]  Ralph D. Lorenz,et al.  Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion , 2017 .

[15]  R. Kirk,et al.  Near Surface Stratigraphy and Regolith Production in Southwestern Elysium Planitia, Mars: Implications for Hesperian-Amazonian Terrains and the InSight Lander Mission , 2017 .

[16]  D. Fäh,et al.  Retrieval of Rayleigh wave ellipticity from ambient vibration recordings , 2017 .

[17]  M. Golombek,et al.  An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site , 2017, Space Science Reviews.

[18]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2016, Space Science Reviews.

[19]  T. Nishimura,et al.  Estimating S‐Wave Attenuation in Sediments by Deconvolution Analysis of KiK‐net Borehole Seismograms , 2016 .

[20]  W. Banerdt,et al.  Seismometer Detection of Dust Devil Vortices by Ground Tilt , 2015, 1511.06580.

[21]  G. D. Moro Joint analysis of Rayleigh-wave dispersion and HVSR of lunar seismic data from the Apollo 14 and 16 sites , 2015 .

[22]  R. Lorenz,et al.  Dust devil signatures in infrasound records of the International Monitoring System , 2015 .

[23]  W. Pike,et al.  The Variation of Planetary Surfaces' Structure and Size Distribution with Depth , 2014 .

[24]  Robert B. Herrmann,et al.  Computer Programs in Seismology: An Evolving Tool for Instruction and Research , 2013 .

[25]  Dario Albarello,et al.  Diffuse elastic wavefield within a simple crustal model. Some consequences for low and high frequencies , 2013 .

[26]  John Townend,et al.  Ambient noise cross‐correlation observations of fundamental and higher‐mode Rayleigh wave propagation governed by basement resonance , 2013 .

[27]  Pierre-Yves Bard,et al.  The Analysis of Long‐Term Frequency and Damping Wandering in Buildings Using the Random Decrement Technique , 2013, 1303.2642.

[28]  N. Theodoulidis,et al.  Exploring the model space and ranking a best class of models in surface-wave dispersion inversion: Application at European strong-motion sites , 2012 .

[29]  Donat Fäh,et al.  The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland , 2012 .

[30]  Ebner Thomas,et al.  Multicomponent Signal Processing for Rayleigh wave Ellipticity Estimation , 2012 .

[31]  P. Lognonné,et al.  Very preliminary reference Moon model , 2011 .

[32]  Francisco J. Sánchez-Sesma,et al.  A theory for microtremor H/V spectral ratio: application for a layered medium , 2011 .

[33]  Nildeep M Patel,et al.  Soil simulant sourcing for the ExoMars rover testbed , 2011 .

[34]  Atilla Ansal,et al.  Determination of shallow S-wave attenuation by down-hole waveform deconvolution: a case study in Istanbul (Turkey) , 2010 .

[35]  F. Melo,et al.  Ultrasound propagation in wet and airless non-consolidated granular materials. , 2010, Ultrasonics.

[36]  Cécile Cornou,et al.  Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec) , 2009 .

[37]  L. Bonilla,et al.  Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements , 2009 .

[38]  P. Mills,et al.  Mechanisms for acoustic absorption in dry and weakly wet granular media. , 2008, Physical review letters.

[39]  D. Möhlmann The influence of van der Waals forces on the state of water in the shallow subsurface of Mars , 2008 .

[40]  Marc Wathelet,et al.  An improved neighborhood algorithm: Parameter conditions and dynamic scaling , 2008 .

[41]  Cécile Cornou,et al.  Effects of Love Waves on Microtremor H/V Ratio , 2008 .

[42]  Yutaka Nakamura ON THE H / V SPECTRUM , 2008 .

[43]  Ebrahim Haghshenas,et al.  Use of Ambient Noise: From Spectral Amplitude Variability to H/V Stability , 2007 .

[44]  F. Cotton,et al.  The nature of noise wavefield and its applications for site effects studies A literature review , 2006 .

[45]  Donat Fäh,et al.  H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations , 2006 .

[46]  Howard A. Perko,et al.  Mars Soil Mechanical Properties and Suitability of Mars Soil Simulants , 2006 .

[47]  Stefano Parolai,et al.  Joint inversion of H/V ratios and dispersion curves from seismic noise: Estimating the S‐wave velocity of bedrock , 2005 .

[48]  N. Theodulidis,et al.  Ambient noise horizontal-to-vertical spectral ratio in site effects estimation and correlation with seismic damage distribution in urban environment: the case of the city of Thessaloniki (Northern Greece) , 2005 .

[49]  Frank Scherbaum,et al.  Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves , 2004 .

[50]  D. Möhlmann,et al.  Water in the upper martian surface at mid- and low-latitudes: presence, state, and consequences , 2004 .

[51]  Stratos Zacharopoulos,et al.  Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation , 2004 .

[52]  Frank Scherbaum,et al.  Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations , 2003 .

[53]  Donat Fäh,et al.  A theoretical investigation of average H/V ratios , 2001 .

[54]  Yeong-Bin Yang,et al.  Dynamic Testing and System Identification of a Multi-Span Highway Bridge , 1999 .

[55]  Yutaka Nakamura,et al.  CLEAR IDENTIFICATION OF FUNDAMENTAL IDEA OF NAKAMURA ' S TECHNIQUE AND ITS APPLICATIONS , 1999 .

[56]  T. Ohmachi,et al.  Ground Motion Characteristics Estimated from Spectral Ratio between Horizontal and Verticcl Components of Mietremors. , 1997 .

[57]  L. Malagnini Velocity and attenuation structure of very shallow soils: Evidence for a frequency-dependent Q , 1996 .

[58]  Pierre-Yves Bard,et al.  Numerical and Theoretical Investigations on the Possibilities and Limitations of Nakamura's Technique , 1994 .

[59]  D. Jongmans,et al.  In-situ attenuation measurements in soils , 1990 .

[60]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[61]  G. Latham,et al.  Lunar near‐surface shear wave velocities at the Apollo Landing Sites as inferred from spectral amplitude ratios , 1980 .

[62]  J. Richardson,et al.  Possible mechanism for seismic attenuation in rocks containing small amounts of volatiles , 1980 .

[63]  D. L. Anderson,et al.  Martian wind activity detected by a seismometer at Viking Lander 2 site , 1979 .

[64]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[65]  B. Tittmann Lunar rock Q in 3000-5000 range achieved in laboratory , 1977 .

[66]  Yosio Nakamura,et al.  Lunar seismicity, structure, and tectonics , 1974, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[67]  G. Sutton,et al.  Lunar shear velocity structure at Apollo Sites 12, 14, and 15 , 1975 .

[68]  Yosio Nakamura,et al.  Shallow lunar structure determined from the passive seismic experiment , 1975 .

[69]  H. A. Cole,et al.  On-line failure detection and damping measurement of aerospace structures by random decrement signatures , 1973 .

[70]  J. Vaisnys,et al.  Acoustic velocities and energy losses in granular aggregates , 1973 .

[71]  B. Jones Measurements of the acoustical parameters of rock powders and the Gold-Soter lunar model. , 1972 .

[72]  E. D. Schmitter Modeling tornado dynamics and the generation of infrasound , electric and magnetic fields ” , 2022 .