Nonparametric inference for discretely sampled L\'evy processes
暂无分享,去创建一个
[1] L. Devroye,et al. Nonparametric density estimation : the L[1] view , 1987 .
[2] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[3] V. Zolotarev. One-dimensional stable distributions , 1986 .
[4] F. Comte,et al. Nonparametric adaptive estimation for pure jump Lévy processes , 2008, 0806.3371.
[5] Claire Lacour,et al. Data‐driven density estimation in the presence of additive noise with unknown distribution , 2011 .
[6] Jakob Sohl. Polar sets of anisotropic Gaussian random fields , 2009, 1208.0721.
[7] J. Doob. Stochastic processes , 1953 .
[8] P. Brockwell,et al. Inference for gamma and stable processes , 1978 .
[9] Catherine Matias,et al. Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model , 2005 .
[10] Rudolf Grübel,et al. Decompounding: an estimation problem for Poisson random sums , 2003 .
[11] Alexander Meister,et al. DENSITY ESTIMATION WITH NORMAL MEASUREMENT ERROR WITH UNKNOWN VARIANCE , 2006 .
[12] Matt P. Wand,et al. Finite sample performance of deconvolving density estimators , 1998 .
[13] Rama Cont,et al. Retrieving Lévy Processes from Option Prices: Regularization of an Ill-posed Inverse Problem , 2006, SIAM J. Control. Optim..
[14] F. Comte,et al. Estimation for L\'{e}vy processes from high frequency data within a long time interval , 2011, 1105.2424.
[15] Michael H. Neumann,et al. Nonparametric estimation for L\'evy processes from low-frequency observations , 2007, 0709.2007.
[16] Jianqing Fan. On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .
[17] Jianqing Fan,et al. Deconvolution with supersmooth distributions , 1992 .
[18] R. Kulperger,et al. Nonparametric estimation of the canonical measure for infinitely divisible distributions , 2003 .
[19] Kai Lai Chung,et al. A Course in Probability Theory , 1949 .
[20] Jos'e E. Figueroa-L'opez,et al. Sieve-based confidence intervals and bands for Lévy densities , 2011, 1104.4389.
[21] Michael G. Akritas,et al. Asymptotic Inference in Levy Processes of the Discontinuous Type , 1981 .
[22] L. Devroye. On the non-consistency of an estimate of Chiu☆ , 1994 .
[23] R. Grübel,et al. Decompounding poisson random sums: Recursively truncated estimates in the discrete case , 2004 .
[24] P. Brockwell,et al. A note on estimation for gamma and stable processes , 1980 .
[25] L. Devroye,et al. Nonparametric Density Estimation: The L 1 View. , 1985 .
[26] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[27] F. Comte,et al. Non‐parametric estimation for pure jump irregularly sampled or noisy Lévy processes , 2010 .
[28] R. Wolpert. Lévy Processes , 2000 .
[29] Cristina Butucea,et al. Sharp Optimality in Density Deconvolution with Dominating Bias. II , 2008 .
[30] P. Hall,et al. Nonparametric estimation for a class of Levy processes , 2010 .
[31] J. Nolan,et al. Maximum likelihood estimation and diagnostics for stable distributions , 2001 .
[32] Lawrence D. Brown,et al. Superefficiency in Nonparametric Function Estimation , 1997 .
[33] A. V. D. Vaart,et al. Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes , 2005 .
[34] F. Comte,et al. Nonparametric estimation for pure jump Lévy processes based on high frequency data. , 2009 .
[35] G. Jongbloed,et al. Parametric Estimation for Subordinators and Induced OU Processes , 2006 .
[36] R. Schilling. Financial Modelling with Jump Processes , 2005 .
[37] Peter Spreij,et al. A kernel type nonparametric density estimator for decompounding , 2005, math/0505355.
[38] Cristina Butucea,et al. Sharp optimality for density deconvolution with dominating bias , 2004 .
[39] Shota Gugushvili,et al. Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process , 2008, 0807.3469.
[40] Yaofeng Ren,et al. On the best constant in Marcinkiewicz-Zygmund inequality , 2001 .
[41] Michael M. Sørensen,et al. A hyperbolic diffusion model for stock prices , 1996, Finance Stochastics.
[42] Claire Lacour,et al. Data driven density estimation in presence of unknown convolution operator , 2011 .
[43] M. Akritas. Asymptotic theory for estimating the parameters of a Lévy process , 1982 .
[44] A. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .
[45] Denis Belomestny,et al. Spectral calibration of exponential Lévy models , 2006, Finance Stochastics.
[46] Tina Hviid Rydberg. The normal inverse gaussian lévy process: simulation and approximation , 1997 .
[47] Jean Jacod,et al. Volatility estimators for discretely sampled Lévy processes , 2007 .
[48] Markus Reiß,et al. Estimation of the characteristics of a Lévy process observed at arbitrary frequency , 2010 .
[49] B. Es,et al. Asymptotic normality of the deconvolution kernel density estimator under the vanishing error variance , 2008, 0807.3540.
[50] Luc Devroye,et al. Nonparametric Density Estimation , 1985 .
[51] Inversion formula for infinitely divisible distributions , 2006, 2103.00205.
[52] Aurore Delaigle,et al. An alternative view of the deconvolution problem , 2008 .
[53] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[54] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[55] S. Janson. Stable distributions , 2011, 1112.0220.
[56] Deconvolution with estimated characteristic function of the errors. , 2008 .
[57] P. Spreij,et al. Deconvolution for an atomic distribution: rates of convergence , 2010, 1007.1906.
[58] B. Buchmann. Weighted empirical processes in the nonparametric inference for Lévy processes , 2009 .
[59] Michael H. Neumann,et al. On the effect of estimating the error density in nonparametric deconvolution , 1997 .