Nonparametric inference for discretely sampled L\'evy processes

Given a sample from a discretely observed Levy process X = (Xt)t�0 of the finite jump activity, the problem of nonparametric estimation of the Levy density ρ corresponding to the process X is studied. An estimator of ρ is proposed that is based on a suitable inversion of the Levy-Khintchine formula and a plug-in device. The main results of the paper deal with upper risk bounds for estimation of ρ over suit- able classes of Levy triplets. The corresponding lower bounds are also discussed.

[1]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[2]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[3]  V. Zolotarev One-dimensional stable distributions , 1986 .

[4]  F. Comte,et al.  Nonparametric adaptive estimation for pure jump Lévy processes , 2008, 0806.3371.

[5]  Claire Lacour,et al.  Data‐driven density estimation in the presence of additive noise with unknown distribution , 2011 .

[6]  Jakob Sohl Polar sets of anisotropic Gaussian random fields , 2009, 1208.0721.

[7]  J. Doob Stochastic processes , 1953 .

[8]  P. Brockwell,et al.  Inference for gamma and stable processes , 1978 .

[9]  Catherine Matias,et al.  Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model , 2005 .

[10]  Rudolf Grübel,et al.  Decompounding: an estimation problem for Poisson random sums , 2003 .

[11]  Alexander Meister,et al.  DENSITY ESTIMATION WITH NORMAL MEASUREMENT ERROR WITH UNKNOWN VARIANCE , 2006 .

[12]  Matt P. Wand,et al.  Finite sample performance of deconvolving density estimators , 1998 .

[13]  Rama Cont,et al.  Retrieving Lévy Processes from Option Prices: Regularization of an Ill-posed Inverse Problem , 2006, SIAM J. Control. Optim..

[14]  F. Comte,et al.  Estimation for L\'{e}vy processes from high frequency data within a long time interval , 2011, 1105.2424.

[15]  Michael H. Neumann,et al.  Nonparametric estimation for L\'evy processes from low-frequency observations , 2007, 0709.2007.

[16]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[17]  Jianqing Fan,et al.  Deconvolution with supersmooth distributions , 1992 .

[18]  R. Kulperger,et al.  Nonparametric estimation of the canonical measure for infinitely divisible distributions , 2003 .

[19]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[20]  Jos'e E. Figueroa-L'opez,et al.  Sieve-based confidence intervals and bands for Lévy densities , 2011, 1104.4389.

[21]  Michael G. Akritas,et al.  Asymptotic Inference in Levy Processes of the Discontinuous Type , 1981 .

[22]  L. Devroye On the non-consistency of an estimate of Chiu☆ , 1994 .

[23]  R. Grübel,et al.  Decompounding poisson random sums: Recursively truncated estimates in the discrete case , 2004 .

[24]  P. Brockwell,et al.  A note on estimation for gamma and stable processes , 1980 .

[25]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[26]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[27]  F. Comte,et al.  Non‐parametric estimation for pure jump irregularly sampled or noisy Lévy processes , 2010 .

[28]  R. Wolpert Lévy Processes , 2000 .

[29]  Cristina Butucea,et al.  Sharp Optimality in Density Deconvolution with Dominating Bias. II , 2008 .

[30]  P. Hall,et al.  Nonparametric estimation for a class of Levy processes , 2010 .

[31]  J. Nolan,et al.  Maximum likelihood estimation and diagnostics for stable distributions , 2001 .

[32]  Lawrence D. Brown,et al.  Superefficiency in Nonparametric Function Estimation , 1997 .

[33]  A. V. D. Vaart,et al.  Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes , 2005 .

[34]  F. Comte,et al.  Nonparametric estimation for pure jump Lévy processes based on high frequency data. , 2009 .

[35]  G. Jongbloed,et al.  Parametric Estimation for Subordinators and Induced OU Processes , 2006 .

[36]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[37]  Peter Spreij,et al.  A kernel type nonparametric density estimator for decompounding , 2005, math/0505355.

[38]  Cristina Butucea,et al.  Sharp optimality for density deconvolution with dominating bias , 2004 .

[39]  Shota Gugushvili,et al.  Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process , 2008, 0807.3469.

[40]  Yaofeng Ren,et al.  On the best constant in Marcinkiewicz-Zygmund inequality , 2001 .

[41]  Michael M. Sørensen,et al.  A hyperbolic diffusion model for stock prices , 1996, Finance Stochastics.

[42]  Claire Lacour,et al.  Data driven density estimation in presence of unknown convolution operator , 2011 .

[43]  M. Akritas Asymptotic theory for estimating the parameters of a Lévy process , 1982 .

[44]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[45]  Denis Belomestny,et al.  Spectral calibration of exponential Lévy models , 2006, Finance Stochastics.

[46]  Tina Hviid Rydberg The normal inverse gaussian lévy process: simulation and approximation , 1997 .

[47]  Jean Jacod,et al.  Volatility estimators for discretely sampled Lévy processes , 2007 .

[48]  Markus Reiß,et al.  Estimation of the characteristics of a Lévy process observed at arbitrary frequency , 2010 .

[49]  B. Es,et al.  Asymptotic normality of the deconvolution kernel density estimator under the vanishing error variance , 2008, 0807.3540.

[50]  Luc Devroye,et al.  Nonparametric Density Estimation , 1985 .

[51]  Inversion formula for infinitely divisible distributions , 2006, 2103.00205.

[52]  Aurore Delaigle,et al.  An alternative view of the deconvolution problem , 2008 .

[53]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[54]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[55]  S. Janson Stable distributions , 2011, 1112.0220.

[56]  Deconvolution with estimated characteristic function of the errors. , 2008 .

[57]  P. Spreij,et al.  Deconvolution for an atomic distribution: rates of convergence , 2010, 1007.1906.

[58]  B. Buchmann Weighted empirical processes in the nonparametric inference for Lévy processes , 2009 .

[59]  Michael H. Neumann,et al.  On the effect of estimating the error density in nonparametric deconvolution , 1997 .