Water Storage Monitoring in the Aral Sea and its Endorheic Basin from Multisatellite Data and a Hydrological Model

[1]  P. Döll,et al.  Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration , 2014 .

[2]  Christian Schwatke,et al.  Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry , 2012 .

[3]  Yun Pan,et al.  Groundwater Storage Changes in China from Satellite Gravity: An Overview , 2018, Remote. Sens..

[4]  F. Schwartz,et al.  Direct anthropogenic contributions to sea level rise in the twentieth century , 1994, Nature.

[5]  F. Giorgi,et al.  Simulating the water balance of the Aral Sea with a coupled regional climate-lake model , 1999 .

[6]  Jesus Gomez-Enri,et al.  Water level fluctuations derived from ENVISAT Radar Altimeter (RA-2) and in-situ measurements in a subtropical waterbody: Lake Izabal (Guatemala) , 2008 .

[7]  D. Rowlands,et al.  Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions , 2008, Journal of Glaciology.

[8]  Estimating continental water storage variations in Central Asia area using GRACE data , 2014 .

[9]  B. Scanlon,et al.  Global evaluation of new GRACE mascon products for hydrologic applications , 2016 .

[10]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[11]  Ronghua Ma,et al.  Hydrologic changes of Aral Sea: A reveal by the combination of radar altimeter data and optical images , 2019, Ann. GIS.

[12]  P. Jones,et al.  Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset , 2020, Scientific Data.

[13]  A. Kes,et al.  CAUSES OF ARAL SEA LEVEL VARIATIONS IN THE PAST , 1990 .

[14]  A. Cazenave,et al.  Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin , 2006 .

[15]  Alka Singh,et al.  On the Desiccation of the South Aral Sea Observed from Spaceborne Missions , 2018, Remote. Sens..

[16]  C. Birkett,et al.  The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes , 1995 .

[17]  B. Chao WITH RELATION TO THE SOUTHERN OSCILLATION/EL NINO , 1984 .

[18]  S. Swenson,et al.  Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity , 2002 .

[19]  A. Cazenave,et al.  SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data , 2011 .

[20]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[21]  Ning-lian Wang,et al.  Changes in area and water volume of the Aral Sea in the arid Central Asia over the period of 1960–2018 and their causes , 2020 .

[22]  Richard Becker,et al.  Estimating the Effects of Anthropogenic Modification on Water Balance in the Aral Sea Watershed Using GRACE: 2003–12 , 2014, Earth Interactions.

[23]  Jean-François Crétaux,et al.  History of Aral Sea level variability and current scientific debates , 2013 .

[24]  P. Döll,et al.  Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites , 2014 .

[25]  L. Håkanson On Lake Form, Lake Volume and Lake Hypsographic Survey , 1977 .

[26]  P. Micklin,et al.  The past, present, and future Aral Sea , 2010 .

[27]  Petra Döll,et al.  Seasonal Water Storage Variations as Impacted by Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS Observations , 2014, Surveys in Geophysics.

[28]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[29]  C. Chung,et al.  On Estimating the Cross Correlation and Least Squares Fit of One Data Set to Another With Time Shift , 2019, Earth and Space Science.

[30]  Srinivas Bettadpur,et al.  High‐resolution CSR GRACE RL05 mascons , 2016 .

[31]  P. Maeyer,et al.  Human and Natural Impacts on the Water Resources in the Syr Darya River Basin, Central Asia , 2019, Sustainability.

[32]  E. Berthier,et al.  A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000-2016 , 2017, Nature geoscience.

[33]  Ole Baltazar Andersen,et al.  CryoSat-2 altimetry for river level monitoring - Evaluation in the Ganges-Brahmaputra River basin , 2015 .

[34]  I. Plotnikov,et al.  The Aral Sea desiccation and possible ways of rehabilitating and conserving its northern part , 1995 .

[35]  Oliver Baur,et al.  On the computation of mass-change trends from GRACE gravity field time-series , 2012 .

[36]  Matthew F. McCabe,et al.  Gap-Filling of Landsat 7 Imagery Using the Direct Sampling Method , 2016, Remote. Sens..

[37]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[38]  Bradley Doorn,et al.  From Research to Operations: The USDA Global Reservoir and Lake Monitor , 2011 .

[39]  U. Schneider,et al.  Evaluating the Hydrological Cycle over Land Using the Newly-Corrected Precipitation Climatology from the Global Precipitation Climatology Centre (GPCC) , 2017 .

[40]  Yongwei Sheng,et al.  Little impact of the Three Gorges Dam on recent decadal lake decline across China's Yangtze Plain , 2017, Water resources research.

[41]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[42]  Fangfang Yao,et al.  Recent global decline in endorheic basin water storages , 2018, Nature Geoscience.

[43]  P. Micklin The Aral Sea Disaster , 2007 .

[44]  Peter Bauer-Gottwein,et al.  Will climate change exacerbate water stress in Central Asia? , 2012, Climatic Change.

[45]  H. V. D. Dool,et al.  A global monthly land surface air temperature analysis for 1948-present , 2008 .

[46]  Christian Schwatke,et al.  DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry , 2015 .

[47]  Wenke Sun,et al.  Evaluation of glacier changes in high‐mountain Asia based on 10 year GRACE RL05 models , 2013 .

[48]  Shin-Chan Han,et al.  Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery , 2011 .

[49]  Chung-Yen Kuo,et al.  Terrestrial Water Storage in African Hydrological Regimes Derived from GRACE Mission Data: Intercomparison of Spherical Harmonics, Mass Concentration, and Scalar Slepian Methods , 2017, Sensors.

[50]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[51]  J. Janowiak,et al.  Global Land Precipitation: A 50-yr Monthly Analysis Based on Gauge Observations , 2002 .

[52]  Ole Baltazar Andersen,et al.  Sea surface height determination in the Arctic using Cryosat-2 SAR data from primary peak empirical retrackers , 2015 .

[53]  Jean-François Crétaux,et al.  An absolute calibration site for radar altimeters in the continental domain: Lake Issykkul in Central Asia , 2009 .

[54]  M. Watkins,et al.  Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution , 2016 .

[55]  Jusipbek S. Kazbekov,et al.  Groundwater resources use and management in the Amu Darya River Basin (Central Asia) , 2009 .

[56]  Wei Shi,et al.  Long‐term hydrological changes of the Aral Sea observed by satellites , 2014 .

[57]  Marcus E. Engdahl,et al.  25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry , 2018 .

[58]  C. Ringler,et al.  Optimizing irrigation efficiency improvements in the Aral Sea Basin , 2016 .

[59]  M. Watkins,et al.  Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons , 2015 .

[60]  P. Micklin The future Aral Sea: hope and despair , 2016, Environmental Earth Sciences.

[61]  Kirill S. Khvorostovsky,et al.  Merging and Analysis of Elevation Time Series Over Greenland Ice Sheet From Satellite Radar Altimetry , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[62]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[63]  Igor S. Zonn,et al.  Irrigation expansion and dynamics of desertification in the Circum-Aral region of Central Asia , 2000 .

[64]  Wenke Sun,et al.  Evaluation of GRACE mascon solutions for small spatial scales and localized mass sources , 2019, Geophysical Journal International.

[65]  Yaning Chen,et al.  Influences of recent climate change and human activities on water storage variations in Central Asia , 2017 .

[66]  Hanqiu Xu Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery , 2006 .

[67]  P. Micklin Desiccation of the Aral Sea: A Water Management Disaster in the Soviet Union , 1988, Science.

[68]  Jack L. Saba,et al.  Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002 , 2005 .

[69]  B. Scanlon,et al.  GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA , 2010 .