Stacking Interactions Induced Selective Conformation of Discrete Aromatic Arrays and Borromean Rings.

Herein, we describe how to utilize stacking interactions to achieve selective supramolecular transformation and molecular Borromean rings (BRs). By using a dinuclear naphthalenediimide (NDI)-based Cp*Rh acceptor and linear bipyridyl ligands, organometallic rectangles featuring dynamic behavior have been constructed. Unique discrete aromatic stacking arrays were formed by inducing pyrene units as guest molecules. The topology of the BRs was realized by the use of a strategically chosen ligand which was capable of participating in D-A interactions and hydrogen bonding, as evidenced from single-crystal X-ray analysis and computational studies. These self-assembly processes underline the advantages of dynamic bonding and π-π stacking interactions, and serve to illustrate a new approach to generating structurally and topologically nontrivial supramolecular architectures.

[1]  J. Nitschke,et al.  Stimuli-Responsive Metal-Ligand Assemblies. , 2015, Chemical reviews.

[2]  M. Fujita,et al.  Coordination assemblies from a Pd(II)-cornered square complex. , 2005, Accounts of chemical research.

[3]  Timothy R. Cook,et al.  Self-assembly of [3]catenanes and a [4]molecular necklace based on a cryptand/paraquat recognition motif. , 2015, Organic letters.

[4]  Timothy R. Cook,et al.  Biomedical and biochemical applications of self-assembled metallacycles and metallacages. , 2013, Accounts of chemical research.

[5]  Samuel P. Black,et al.  Generation of a Dynamic System of Three‐Dimensional Tetrahedral Polycatenanes , 2013, Angewandte Chemie.

[6]  J Fraser Stoddart,et al.  Nanoscale borromean rings. , 2005, Accounts of chemical research.

[7]  G. Clever,et al.  Self-assembled coordination cages based on banana-shaped ligands. , 2014, Chemical Society reviews.

[8]  Yanhui Shi,et al.  Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(II) metallacycles. , 2013, Journal of the American Chemical Society.

[9]  C. Mirkin,et al.  Enzyme mimics based upon supramolecular coordination chemistry. , 2011, Angewandte Chemie.

[10]  Gareth W. V. Cave,et al.  The dynamic chemistry of molecular borromean rings and Solomon knots. , 2010, Chemistry.

[11]  Sheng-Li Huang,et al.  Self-assembly of molecular Borromean rings from bimetallic coordination rectangles. , 2014, Angewandte Chemie.

[12]  Yue-jian Lin,et al.  Cp*Rh-based heterometallic metallarectangles: size-dependent Borromean link structures and catalytic acyl transfer. , 2013, Journal of the American Chemical Society.

[13]  H. Tan,et al.  O,O'-Disubstituted N,N'-dihydroxynaphthalenediimides (DHNDI): first principles designed organic building blocks for materials science. , 2011, Organic letters.

[14]  M. Ward,et al.  Functional behaviour from controlled self-assembly: challenges and prospects. , 2013, Chemical Society reviews.

[15]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.

[16]  Timothy R. Cook,et al.  Self-assembly of triangular and hexagonal molecular necklaces. , 2014, Journal of the American Chemical Society.

[17]  G. Jin,et al.  Half-sandwich iridium- and rhodium-based organometallic architectures: rational design, synthesis, characterization, and applications. , 2014, Accounts of chemical research.

[18]  M. Schmittel,et al.  Metal-coordination-driven dynamic heteroleptic architectures. , 2010, Chemical Society reviews.

[19]  M. Harmata,et al.  Chiral molecular tweezers. , 2004, Accounts of chemical research.

[20]  J. Nitschke,et al.  Molecular containers in complex chemical systems. , 2015, Chemical Society reviews.

[21]  A molecular solomon link. , 2007, Angewandte Chemie.

[22]  R. Custelcean Anion encapsulation and dynamics in self-assembled coordination cages. , 2014, Chemical Society reviews.

[23]  C. Mirkin,et al.  Development of a coordination chemistry-based approach for functional supramolecular structures. , 2005, Accounts of chemical research.

[24]  P. Mukherjee,et al.  Template-free multicomponent coordination-driven self-assembly of Pd(II)/Pt(II) molecular cages. , 2014, Chemical communications.

[25]  I. Vitorica-Yrezabal,et al.  Lanthanide Template Synthesis of Trefoil Knots of Single Handedness. , 2015, Journal of the American Chemical Society.

[26]  S. D. Ittel,et al.  16. (η6‐Hexamethylbenzene)Ruthenium Complexes , 2007 .

[27]  D. Langreth,et al.  Stacking interactions and DNA intercalation. , 2009, The journal of physical chemistry. B.

[28]  V. Lynch,et al.  Quantitative self-assembly of a purely organic three-dimensional catenane in water. , 2015, Nature chemistry.

[29]  P. Maitlis,et al.  (η5-Pentamethylcyclopentadienyl)Rhodium and -Iridium Compounds , 2007 .

[30]  P Hobza,et al.  Noncovalent interactions: a challenge for experiment and theory. , 2000, Chemical reviews.

[31]  G. Clever,et al.  NMR-based structure determination of an intertwined coordination cage resembling a double trefoil knot. , 2012, Angewandte Chemie.

[32]  Jonathan R. Nitschke,et al.  Building on architectural principles for three-dimensional metallosupramolecular construction. , 2013, Chemical Society reviews.

[33]  G. Bricogne,et al.  Self-assembly of a giant molecular Solomon link from 30 subcomponents. , 2014, Angewandte Chemie.

[34]  Robert G. Bergman,et al.  Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. , 2009, Accounts of chemical research.

[35]  J Fraser Stoddart,et al.  Chemical topology: complex molecular knots, links, and entanglements. , 2011, Chemical reviews.

[36]  Jean-Pierre Sauvage,et al.  Transition metal complexes as molecular machine prototypes. , 2007, Chemical Society reviews.

[37]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[38]  J. Sanders,et al.  Homochiral and meso figure eight knots and a Solomon link. , 2014, Journal of the American Chemical Society.

[39]  J. Sanders,et al.  Exploring the formation pathways of donor-acceptor catenanes in aqueous dynamic combinatorial libraries. , 2011, Journal of the American Chemical Society.

[40]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[41]  A. Valero,et al.  Allosteric initiation and regulation of catalysis with a molecular knot , 2016, Science.

[42]  M. Fujita,et al.  Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. , 2009, Angewandte Chemie.

[43]  H. Amouri,et al.  Confined nanospaces in metallocages: guest molecules, weakly encapsulated anions, and catalyst sequestration. , 2012, Chemical reviews.

[44]  C. Campbell,et al.  Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. , 2011, Angewandte Chemie.

[45]  C. Mirkin,et al.  Heteroligated supramolecular coordination complexes formed via the halide-induced ligand rearrangement reaction. , 2008, Accounts of chemical research.

[46]  T. Cook,et al.  Formation of [3]catenanes from 10 precursors via multicomponent coordination-driven self-assembly of metallarectangles. , 2013, Journal of the American Chemical Society.

[47]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.

[48]  J. Sanders,et al.  Structural parameters governing the dynamic combinatorial synthesis of catenanes in water. , 2012, Journal of the American Chemical Society.

[49]  G. N. Sastry,et al.  Cooperativity in Noncovalent Interactions. , 2016, Chemical reviews.

[50]  Fritz Vögtle,et al.  Catenanes and rotaxanes of the amide type , 1996 .

[51]  R. Scopelliti,et al.  A coordination cage with an adaptable cavity size. , 2010, Journal of the American Chemical Society.

[52]  F. Diederich,et al.  Aromatic rings in chemical and biological recognition: energetics and structures. , 2011, Angewandte Chemie.

[53]  Xuzhou Yan,et al.  Photophysical Properties of Organoplatinum(II) Compounds and Derived Self-Assembled Metallacycles and Metallacages: Fluorescence and its Applications. , 2016, Accounts of chemical research.

[54]  D. Leigh,et al.  A Star of David catenane. , 2014, Nature chemistry.

[55]  I. Vitorica-Yrezabal,et al.  A Solomon Link through an Interwoven Molecular Grid** , 2015, Angewandte Chemie.

[56]  W. L. Jorgensen Supramolecular chemistry. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Hiroshi Ito,et al.  Molecular recognition: from solution science to nano/materials technology. , 2012, Chemical Society reviews.

[58]  Timothy R Cook,et al.  Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. , 2015, Chemical reviews.

[59]  G. Jin,et al.  Stepwise formation of organometallic macrocycles, prisms and boxes from Ir, Rh and Ru-based half-sandwich units. , 2009, Chemical Society reviews.

[60]  Yu-Xuan Wang,et al.  Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: from structure to functions. , 2015, Chemical Society reviews.

[61]  A. Casini,et al.  Self-assembled M2L4 coordination cages: Synthesis and potential applications , 2014 .

[62]  David A Leigh,et al.  Catenanes: Fifty Years of Molecular Links , 2015, Angewandte Chemie.

[63]  Tanya K. Ronson,et al.  Stacking Interactions Drive Selective Self-Assembly and Self-Sorting of Pyrene-Based M(II)4L6 Architectures. , 2015, Journal of the American Chemical Society.

[64]  P. Stang,et al.  Self-organization in coordination-driven self-assembly. , 2009, Accounts of chemical research.

[65]  Hyunuk Kim,et al.  Template-Free Synthesis of a Molecular Solomon Link by Two-Component Self-Assembly. , 2016, Angewandte Chemie.

[66]  Wei Wang,et al.  Supramolecular transformations within discrete coordination-driven supramolecular architectures. , 2016, Chemical Society reviews.

[67]  C. Campbell,et al.  Template synthesis of molecular knots. , 2013, Chemical Society reviews.

[68]  M. Fujita,et al.  Engineering stacks of aromatic rings by the interpenetration of self-assembled coordination cages. , 2008, Journal of the American Chemical Society.

[69]  Peter J Stang,et al.  Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. , 2011, Chemical reviews.

[70]  Jihun Oh,et al.  Selective Synthesis of Molecular Borromean Rings: Engineering of Supramolecular Topology via Coordination-Driven Self-Assembly. , 2016, Journal of the American Chemical Society.

[71]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[72]  Gareth W. V. Cave,et al.  Molecular Borromean Rings , 2004, Science.