The k-Centre Selection Problem for Multidimensional Necklaces

This paper introduces the natural generalisation of necklaces to the multidimensional setting – multidimensional necklaces. One-dimensional necklaces are known as cyclic words, two-dimensional necklaces correspond to toroidal codes, and necklaces of dimension three can represent periodic motives in crystals. Our central results are two approximation algorithms for the k-Centre selection problem, where the task is to find k uniformly spaced objects within a set of necklaces. We show that it is NP-hard to verify a solution to this problem even in the one dimensional setting. This strong negative result is complimented with two polynomialtime approximation algorithms. In one dimension we provide a 1 + f(k,N) approximation algorithm where f(k,N) = logq (kN) N−logq (kN) − log 2 q(kN) 2N(N−logq (kN)) . For two dimensions we give a 1 + g(k,N) approximation algorithm where g(k,N) = logq (kN) N−logq (kN) − log 2 q(k) 2N(N−logq (kN)) . In both cases N is the size of the necklaces and q the size of the alphabet. Alongside our results for these new problems, we also provide the first polynomial time algorithms for counting, generating, ranking and unranking multidimensional necklaces.

[1]  Gwénaël Richomme,et al.  Periodicity in rectangular arrays , 2016, Inf. Process. Lett..

[2]  Symeon Bozapalidis,et al.  Picture codes , 2006, RAIRO Theor. Informatics Appl..

[3]  Glenn H. Hurlbert,et al.  New constructions for De Bruijn tori , 1995, Des. Codes Cryptogr..

[4]  Samir Guglani,et al.  LINGUISTIC COMPETENCE AND PSYCHOPATHOLOGY : A CROSS-CULTURAL MODEL , 1982, Indian journal of psychiatry.

[5]  Kenneth G. Paterson,et al.  On the Existence of de Bruijn Tori with Two by Two Windows , 1996, J. Comb. Theory, Ser. A.

[6]  C Collins,et al.  The Flexible Unit Structure Engine (FUSE) for probe structure-based composition prediction. , 2018, Faraday discussions.

[7]  Rani Siromoney,et al.  Abstract families of matrices and picture languages , 1972, Comput. Graph. Image Process..

[8]  Ming Li,et al.  On the k-Closest Substring and k-Consensus Pattern Problems , 2004, CPM.

[9]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[10]  Antonio Restivo,et al.  Two-Dimensional Languages , 1997, Handbook of Formal Languages.

[11]  Fred S. Annexstein Generating De Bruijn Sequences: An Efficient Implementation , 1997, IEEE Trans. Computers.

[12]  Glenn H. Hurlbert,et al.  On the de Bruijn Torus Problem , 1993, J. Comb. Theory, Ser. A.

[13]  Oliver Matz,et al.  Regular Expressions and Context-Free Grammars for Picture Languages , 1997, STACS.

[14]  Joe Sawada,et al.  Practical algorithms to rank necklaces, Lyndon words, and de Bruijn sequences , 2017, J. Discrete Algorithms.

[15]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[16]  Kellogg S. Booth,et al.  Lexicographically Least Circular Substrings , 1980, Inf. Process. Lett..

[17]  Bin Ma,et al.  On the closest string and substring problems , 2002, JACM.

[18]  Wojciech Rytter,et al.  Computing k-th Lyndon Word and Decoding Lexicographically Minimal de Bruijn Sequence , 2014, CPM.

[19]  Francis Y. L. Chin,et al.  Uniformly inserting points on square grid , 2011, Inf. Process. Lett..

[20]  Michael E. Saks,et al.  Efficient Indexing of Necklaces and Irreducible Polynomials over Finite Fields , 2014, Theory Comput..

[21]  Paul G. Spirakis,et al.  Crystal Structure Prediction via Oblivious Local Search , 2020, SEA.

[22]  Harold Fredricksen,et al.  Necklaces of beads in k colors and k-ary de Bruijn sequences , 1978, Discret. Math..

[23]  Frank Ruskey,et al.  Fast Algorithms to Generate Necklaces, Unlabeled Necklaces, and Irreducible Polynomials over GF(2) , 2000, J. Algorithms.

[24]  Dominique Perrin,et al.  Codes and Automata (Encyclopedia of Mathematics and its Applications) , 2009 .

[25]  Igor Potapov,et al.  Ranking Bracelets in Polynomial Time , 2021, CPM.

[26]  Matthew J. Rosseinsky Computationally Assisted Identification of Functional Inorganic Materials. , 2013 .

[27]  Michel Latteux,et al.  Recognizable Picture Languages and Domino Tiling , 1997, Theor. Comput. Sci..

[28]  P. Mandal,et al.  Accelerated discovery of two crystal structure types in a complex inorganic phase field , 2017, Nature.

[29]  Marcella Anselmo,et al.  Toroidal Codes and Conjugate Pictures , 2019, LATA.

[30]  Brett Stevens,et al.  Locating patterns in the de Bruijn torus , 2016, Discret. Math..

[31]  Frank Ruskey,et al.  Generating Necklaces and Strings with Forbidden Substrings , 2000, COCOON.

[32]  Fan Chung Graham,et al.  Universal cycles for combinatorial structures , 1992, Discret. Math..

[33]  Dániel Marx,et al.  The Parameterized Hardness of the k-Center Problem in Transportation Networks , 2018, Algorithmica.