Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations

We introduce a method which allows one to recover the equations of motion of a class of nonholonomic systems by finding instead an unconstrained Hamiltonian system on the full phase space, and to restrict the resulting canonical equations to an appropriate submanifold of phase space. We focus first on the Lagrangian picture of the method and deduce the corresponding Hamiltonian from the Legendre transformation. We illustrate the method with several examples and we discuss its relationship to the Pontryagin maximum principle.

[1]  Alexey V. Borisov,et al.  Hamiltonization of nonholonomic systems , 2005 .

[2]  O. Krupkova On the inverse problem of the calculus of variations for ordinary differential equations , 1993 .

[3]  A. D. Lewis,et al.  Variational Principles for Constrained Systems: Theory and Experiment , 1995 .

[4]  S. Martínez,et al.  Nonholonomic Integrators , 2001 .

[5]  W. E. Schmitendorf,et al.  Analytical dynamics of discrete systems , 1977 .

[6]  Jerrold E. Marsden,et al.  The Breadth of Symplectic and Poisson Geometry , 2007 .

[7]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[8]  Olga Krupková,et al.  Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations , 2007 .

[9]  J. Klauder Beyond Conventional Quantization , 1999 .

[10]  Erez Hasman,et al.  Coriolis effect in optics: unified geometric phase and spin-Hall effect. , 2008, Physical review letters.

[11]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[12]  M. Crampin,et al.  The inverse problem for invariant Lagrangians on a Lie group , 2008, 0801.4735.

[13]  Anthony M. Bloch,et al.  Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data , 2008 .

[14]  I. Anderson,et al.  The Inverse Problem in the Calculus of Variations for Ordinary Differen-tial Equations , 1992 .

[15]  L. C. Gomes,et al.  The Quantization of Classical Non-Holonomic Systems , 1983 .

[16]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[17]  Marc Henneaux,et al.  Quantization of Gauge Systems , 1992 .

[18]  Jorge Cortes,et al.  Non-holonomic integrators , 2001 .

[19]  R. Eden,et al.  The quantum mechanics of non-holonomic systems , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  J. Douglas Solution of the Inverse Problem of the Calculus of Variations. , 1939, Proceedings of the National Academy of Sciences of the United States of America.

[21]  E. Heller,et al.  Quantizing constrained systems , 1997 .

[22]  Sonia Martínez,et al.  Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions , 2002, SIAM J. Control. Optim..

[23]  Jorge Cortes Geometric, Control and Numerical Aspects of Nonholonomic Systems , 2002 .

[24]  Antonio Guarnieri,et al.  WITH THE COLLABORATION OF , 2009 .

[25]  Robert L. Bryant,et al.  Rigidity of integral curves of rank 2 distributions , 1993 .

[26]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[27]  P. Pitanga Quantization of a non-holonomic system with symmetry , 1994 .

[28]  A. Bloch,et al.  Quantization of a nonholonomic system. , 2008, Physical review letters.

[29]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[30]  Ruggero Maria Santilli,et al.  Foundations of Theoretical Mechanics I , 1978 .

[31]  Jair Koiller,et al.  Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2005 .

[32]  Yuri N. Fedorov,et al.  Discrete Nonholonomic LL Systems on Lie Groups , 2004, math/0409415.

[33]  Ruggero Maria Santilli,et al.  Foundations of Theoretical Mechanics I: The Inverse Problem in Newtonian Mechanics , 1978 .

[34]  Towards a geometrical understanding of Douglas's solution of the inverse problem of the calculus of variations , 1994 .

[35]  Niky Kamran The inverse problem of the calculus of variations , 2002 .