Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations
暂无分享,去创建一个
T. Mestdag | A. Bloch | O. Fernandez | A. M. Bloch | T. Mestdag | O. E. Fernandez | Oscar E. Fernandez
[1] Alexey V. Borisov,et al. Hamiltonization of nonholonomic systems , 2005 .
[2] O. Krupkova. On the inverse problem of the calculus of variations for ordinary differential equations , 1993 .
[3] A. D. Lewis,et al. Variational Principles for Constrained Systems: Theory and Experiment , 1995 .
[4] S. Martínez,et al. Nonholonomic Integrators , 2001 .
[5] W. E. Schmitendorf,et al. Analytical dynamics of discrete systems , 1977 .
[6] Jerrold E. Marsden,et al. The Breadth of Symplectic and Poisson Geometry , 2007 .
[7] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[8] Olga Krupková,et al. Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations , 2007 .
[9] J. Klauder. Beyond Conventional Quantization , 1999 .
[10] Erez Hasman,et al. Coriolis effect in optics: unified geometric phase and spin-Hall effect. , 2008, Physical review letters.
[11] K. Lynch. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[12] M. Crampin,et al. The inverse problem for invariant Lagrangians on a Lie group , 2008, 0801.4735.
[13] Anthony M. Bloch,et al. Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data , 2008 .
[14] I. Anderson,et al. The Inverse Problem in the Calculus of Variations for Ordinary Differen-tial Equations , 1992 .
[15] L. C. Gomes,et al. The Quantization of Classical Non-Holonomic Systems , 1983 .
[16] I. Neĭmark,et al. Dynamics of Nonholonomic Systems , 1972 .
[17] Marc Henneaux,et al. Quantization of Gauge Systems , 1992 .
[18] Jorge Cortes,et al. Non-holonomic integrators , 2001 .
[19] R. Eden,et al. The quantum mechanics of non-holonomic systems , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[20] J. Douglas. Solution of the Inverse Problem of the Calculus of Variations. , 1939, Proceedings of the National Academy of Sciences of the United States of America.
[21] E. Heller,et al. Quantizing constrained systems , 1997 .
[22] Sonia Martínez,et al. Geometric Description of Vakonomic and Nonholonomic Dynamics. Comparison of Solutions , 2002, SIAM J. Control. Optim..
[23] Jorge Cortes. Geometric, Control and Numerical Aspects of Nonholonomic Systems , 2002 .
[24] Antonio Guarnieri,et al. WITH THE COLLABORATION OF , 2009 .
[25] Robert L. Bryant,et al. Rigidity of integral curves of rank 2 distributions , 1993 .
[26] A. Bloch,et al. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[27] P. Pitanga. Quantization of a non-holonomic system with symmetry , 1994 .
[28] A. Bloch,et al. Quantization of a nonholonomic system. , 2008, Physical review letters.
[29] V. Arnold,et al. Dynamical Systems III , 1987 .
[30] Ruggero Maria Santilli,et al. Foundations of Theoretical Mechanics I , 1978 .
[31] Jair Koiller,et al. Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization , 2005 .
[32] Yuri N. Fedorov,et al. Discrete Nonholonomic LL Systems on Lie Groups , 2004, math/0409415.
[33] Ruggero Maria Santilli,et al. Foundations of Theoretical Mechanics I: The Inverse Problem in Newtonian Mechanics , 1978 .
[34] Towards a geometrical understanding of Douglas's solution of the inverse problem of the calculus of variations , 1994 .
[35] Niky Kamran. The inverse problem of the calculus of variations , 2002 .