Evidence of the metal-insulator transition in ultrathin unstrained V2O3 thin films

We report the strain state and transport properties of V2O3 layers and V2O3/Cr2O3 bilayers deposited by molecular beam epitaxy on (0001)-Al2O3. By changing the layer on top of which V2O3 is grown, we change the lattice parameters of ultrathin V2O3 films significantly. We find that the metal-insulator transition is strongly attenuated in ultrathin V2O3 layers grown coherently on Al2O3. This is in contrast with ultrathin V2O3 layers grown on Cr2O3 buffer layers, where the metal-insulator transition is preserved. Our results provide evidence that the existence of the transition in ultrathin films is closely linked with the lattice deformation.

[1]  P. Solomon,et al.  Giant piezoresistive on/off ratios in rare-earth chalcogenide thin films enabling nanomechanical switching. , 2013, Nano letters.

[2]  Shriram Ramanathan,et al.  Correlated Electron Materials and Field Effect Transistors for Logic: A Review , 2012, 1212.2684.

[3]  Justin Brockman,et al.  Substrate-induced disorder in V2O3 thin films grown on annealed c-plane sapphire substrates , 2012 .

[4]  J. Locquet,et al.  Correlation between strain and the metal-insulator transition in epitaxial V2O3 thin films grown by Molecular Beam Epitaxy , 2012 .

[5]  J. Rueff,et al.  Quasiparticles at the Mott transition in V2O3: wave vector dependence and surface attenuation. , 2009, Physical review letters.

[6]  E. Tosatti,et al.  Surface dead layer for quasiparticles near a mott transition. , 2009, Physical review letters.

[7]  S. Alpay,et al.  Thickness dependence of electronic phase transitions in epitaxial V2O3 films on (0001) LiTaO3 , 2008 .

[8]  S. Alpay,et al.  Resistivity of V2O3 thin films deposited on a-plane (110) and c-plane (001) sapphire by pulsed laser deposition , 2008 .

[9]  R. Frésard,et al.  Thickness dependence of the electronic properties in V2O3 thin films , 2007, 0709.0692.

[10]  A. N. Rubtsov,et al.  Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V 2 O 3 , 2007, cond-mat/0701263.

[11]  P. Limelette,et al.  Strain-induced pressure effect in pulsed laser deposited thin films of the strongly correlated oxide V 2 O 3 , 2006, cond-mat/0609342.

[12]  E. Wang,et al.  Thickness-dependent metal–insulator transition in V2O3 ultrathin films , 2004 .

[13]  Z. Hiroi,et al.  Epitaxial strain effects on the metal–insulator transition in V2O3 thin films , 2004 .

[14]  K. Held,et al.  Prominent quasiparticle peak in the photoemission spectrum of the metallic phase of V2O3. , 2002, Physical review letters.

[15]  L. Craco,et al.  Orbital switching and the first-order insulator-metal transition in paramagnetic V2O3. , 2002, Physical review letters.

[16]  I. Yamaguchi,et al.  Preparation of epitaxial V2O3 films on C-, A- and R-planes of α-Al2O3 substrates by coating-pyrolysis process , 2000 .

[17]  G. Van Tendeloo,et al.  Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain , 1998, Nature.

[18]  S. Horn,et al.  Influence of strain on the electronic properties of epitaxial V2O3 thin films , 1997 .

[19]  S. Horn,et al.  Effect of Growth Conditions and Buffer Layers on the Metal-Insulator Transition in V 2 O 3 Thin Films , 1995 .

[20]  J. P. Remeika,et al.  Electronic Specific Heat of Metallic Ti-Doped V 2 O 3 , 1971 .