An Overview of Our Results

[1]  A. Wood,et al.  Large solutions of semilinear elliptic equations with nonlinear gradient terms , 1999 .

[2]  J. Serrin,et al.  A remark on entire solutions of quasilinear elliptic equations , 2011 .

[3]  Vicentiu D. Radulescu,et al.  The maximum principle with lack of monotonicity , 2018 .

[4]  L. Mari,et al.  On the equivalence of stochastic completeness, Liouville and Khas'minskii condition in linear and nonlinear setting , 2011, 1106.1352.

[5]  J. Serrin,et al.  A strong maximum principle and a compact support principle for singular elliptic inequalities , 1999 .

[6]  J. Keller On solutions of δu=f(u) , 1957 .

[7]  J. Serrin,et al.  Qualitative properties for solutions of singular elliptic inequalities on complete manifolds , 2007 .

[8]  A. Quaas,et al.  A note on the strong maximum principle and the compact support principle , 2009 .

[9]  John L. Lewis Capacitary functions in convex rings , 1977 .

[10]  A. Borbély Stochastic Completeness and the Omori–Yau Maximum Principle , 2017 .

[11]  A. Figalli A simple proof of the Morse-Sard theorem in Sobolev spaces , 2008 .

[12]  R. Khas'minskii Ergodic Properties of Recurrent Diffusion Processes and Stabilization of the Solution to the Cauchy Problem for Parabolic Equations , 1960 .

[13]  Constantin P. Niculescu,et al.  Explosive solutions of elliptic equations with absorption and nonlinear gradient term , 2002 .

[14]  E. Mitidieri,et al.  A priori estimates and reduction principles for quasilinear elliptic problems and applications , 2012, Advances in Differential Equations.

[15]  J. Eells,et al.  REGULARITY OF EXPONENTIALLY HARMONIC FUNCTIONS , 1991 .

[16]  Some remarks about the Morse–Sard theorem and approximate differentiability , 2017, Revista Matemática Complutense.

[17]  M. Rigoli,et al.  The compact support principle for differential inequalities with gradient terms , 2010 .

[18]  On Critical Points of p Harmonic Functions in the Plane , 1994 .

[19]  J. Eells,et al.  Some properties of exponentially harmonic maps , 1992 .

[20]  M. Rigoli,et al.  Maximum Principles and Geometric Applications , 2016 .

[21]  Nonlinear differential inequalities and functions of compact support , 1976 .

[22]  M. Rigoli,et al.  A remark on the maximum principle and stochastic completeness , 2002 .

[23]  E. Mitidieri,et al.  A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities , 2010 .

[24]  Y. Xin,et al.  A GENERALIZED MAXIMUM PRINCIPLE AND ITS APPLICATIONS IN GEOMETRY , 1992 .

[25]  L. Brandolini,et al.  A note on Keller–Osserman conditions on Carnot groups , 2012 .

[26]  H. Brezis Semilinear equations in ℝN without condition at infinity , 1984 .

[27]  R. Azencott Behavior of diffusion semi-groups at infinity , 1974 .

[28]  M. Rigoli,et al.  Some Remarks on the Weak Maximum Principle , 2005 .

[29]  M. Rigoli,et al.  A general form of the weak maximum principle and some applications , 2013, 1303.4861.

[30]  E. Mitidieri,et al.  Liouville theorems for elliptic systems and applications , 2014 .

[31]  M. Rigoli,et al.  On the role of gradient terms in coercive quasilinear differential inequalities on Carnot groups , 2015, 1505.05544.

[32]  P. Pucci,et al.  Entire solutions of singular elliptic inequalities on complete manifolds , 2007 .

[33]  M. Rigoli,et al.  On the 1/H-flow by p-Laplace approximation: New estimates via fake distances under Ricci lower bounds , 2019, American Journal of Mathematics.

[34]  P. Pucci,et al.  Nonlinear elliptic inequalities with gradient terms on the Heisenberg group , 2015 .

[35]  THE FELLER PROPERTY ON RIEMANNIAN MANIFOLDS , 2010, 1010.1653.

[36]  Roberta Filippucci Nonexistence of positive weak solutions of elliptic inequalities , 2009 .

[37]  Patrizia Pucci,et al.  The Maximum Principle , 2007 .

[38]  Stability of translating solutions to mean curvature flow , 2005, math/0509372.

[39]  P. Pucci,et al.  NONLINEAR WEIGHTED p-LAPLACIAN ELLIPTIC INEQUALITIES WITH GRADIENT TERMS , 2010 .

[40]  Alexander Grigor'yan,et al.  Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds , 1999 .

[41]  G. Caristi,et al.  Nonexistence of positive solutions of quasilinear equations , 1997, Advances in Differential Equations.

[42]  V. Le On some equivalent properties of sub- and supersolutions in second order quasilinear elliptic equations , 1998 .

[43]  S. Yau Harmonic functions on complete riemannian manifolds , 1975 .

[44]  R. Benedetti,et al.  Lectures on Hyperbolic Geometry , 1992 .

[45]  B. Sirakov,et al.  Author manuscript, published in "Journal of Differential Equations (2013) 4327-4346" SOLVABILITY OF NONLINEAR ELLIPTIC EQUATIONS WITH GRADIENT TERMS , 2022 .

[46]  T. Colding New monotonicity formulas for Ricci curvature and applications. I , 2011, 1111.4715.

[47]  Patrizia Pucci,et al.  The strong maximum principle revisited , 2004 .

[48]  M. Rigoli,et al.  Keller-Osserman type conditions for differential inequalities with gradient terms on the Heisenberg group , 2010, 1003.5780.

[49]  Y. Naito,et al.  Entire solutions of the inequality div(A(∣Du∣)Du)≧f(u) , 1997 .

[50]  A. Greco On the existence of large solutions for equations of prescribed mean curvature , 1998 .

[51]  L. Mari,et al.  Duality between Ahlfors–Liouville and Khas’minskii properties for non-linear equations , 2016, Communications in Analysis and Geometry.

[52]  M. Rigoli,et al.  Maximum Principles On Riemannian Manifolds And Applications , 2005 .

[53]  G. Derrick Comments on Nonlinear Wave Equations as Models for Elementary Particles , 1964 .

[54]  I. Holopainen Riemannian Geometry , 1927, Nature.

[55]  V. Benci,et al.  Soliton Like Solutions of a Lorentz Invariant Equation in Dimension 3 , 1998 .

[56]  Paolo Marcellini On the definition and the lower semicontinuity of certain quasiconvex integrals , 1986 .

[57]  Hideki. Omori Isometric immersions of Riemannian manifolds , 1967 .

[58]  J. Serrin,et al.  Qualitative properties of ground states for singular elliptic equations with weights , 2006 .

[59]  M. Rigoli,et al.  Some non-linear function theoretic properties of Riemannian manifolds , 2006 .

[60]  L. Bers Mathematical Aspects of Subsonic and Transonic Gas Dynamics , 2016 .

[61]  Xu-jia Wang Convex solutions to the mean curvature flow , 2004, math/0404326.

[62]  S. Yau,et al.  Differential equations on riemannian manifolds and their geometric applications , 1975 .

[63]  L. Karp Differential inequalities on complete Riemannian manifolds and applications , 1985 .

[64]  L. Sibner,et al.  A non-linear Hodge-de Rham theorem , 1970 .

[65]  Tadeusz Iwaniec,et al.  Regularity of p-harmonic functions on the plane. , 1989 .

[66]  P. Lions,et al.  Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints , 1989 .

[67]  P. Pucci,et al.  On entire solutions of degenerate elliptic differential inequalities with nonlinear gradient terms , 2009 .

[68]  J. Serrin,et al.  Entire solutions of completely coercive quasilinear elliptic equations, II , 2011 .

[69]  Robert Osserman,et al.  On the inequality $\Delta u\geq f(u)$. , 1957 .

[70]  T. Colding,et al.  Harmonic functions with polynomial growth , 1997 .

[71]  M. Rigoli,et al.  Volume growth, “a priori” estimates, and geometric applications , 2003 .

[72]  Maximum Principles at Infinity and the Ahlfors-Khas’minskii Duality: An Overview , 2019, Contemporary Research in Elliptic PDEs and Related Topics.

[73]  Y. Haitao A compact support principle for a class of elliptic differential inequalities , 2004 .

[74]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[75]  J. Serrin,et al.  Comparison principles, uniqueness and symmetry results of solutions of quasilinear elliptic equations and inequalities , 2013 .

[76]  V. Tkachev Some estimates of the mean curvature of nonparametric surfaces given over domains inRn , 1994 .

[77]  P. Pucci,et al.  Erratum: Non-existence of Entire Solutions of Degenerate Elliptic Inequalities with Weights , 2008 .

[78]  M. Rigoli,et al.  Keller–Osserman conditions for diffusion-type operators on Riemannian manifolds , 2009, 0904.4647.

[79]  R. Redheffer On the inequality Δu⩾f(u,¦grad u¦) , 1960 .

[80]  M. Rigoli,et al.  On the Omori-Yau Maximum Principle and Its Applications to Differential Equations and Geometry , 1995 .

[81]  Jeff Cheeger,et al.  Lower bounds on Ricci curvature and the almost rigidity of warped products , 1996 .

[82]  Steven J. Altschuler,et al.  Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle , 1994 .

[83]  A. Borbély A Remark on the Omori-Yau Maximum Principle , 2012, 1203.0178.

[84]  L. Pascale The Morse-Sard Theorem in Sobolev spaces , 2001 .

[85]  Jeff Cheeger,et al.  On the structure of spaces with Ricci curvature bounded below. II , 2000 .

[86]  M. Rigoli,et al.  On the compact support principle on complete manifolds , 2009 .

[87]  Lei Ni,et al.  Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula , 2007, 0711.2291.

[88]  L. Cherfils,et al.  On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian , 2004 .

[89]  L. Brandolini,et al.  Liouville type results and a maximum principle for non-linear differential operators on the Heisenberg group , 2014 .

[90]  D. Bianchi,et al.  Laplacian cut-offs, porous and fast diffusion on manifolds and other applications , 2016, 1607.06008.

[91]  Roger Moser,et al.  The inverse mean curvature flow and p-harmonic functions , 2007 .

[92]  Xiaohong Li,et al.  Nonexistence of solutions for singular quasilinear differential inequalities with a gradient nonlinearity , 2012 .

[93]  J. Serrin The Liouville theorem for homogeneous elliptic differential inequalities , 2011 .

[94]  Faten Toumi Existence of blowup solutions for nonlinear problems with a gradient term , 2006, Int. J. Math. Math. Sci..

[95]  J. Serrin Entire solutions of quasilinear elliptic equations , 2009 .