Multi‐zone fusion crust formation and classification of the 2004 Auckland meteorite (L6, S5, and W0)

On June 12, 2004, a meteorite passed through Earth's atmosphere and landed under the television in the living room of a house in Auckland, New Zealand. Textural characteristics, the chemistry of olivine (Fa23–24) and orthopyroxene (Fs20.7), and the bulk rock triple oxygen isotopes (δ17O + 3.1; δ18O + 4.2‰) from the interior of the completely unweathered (W0) 1.3 kg meteorite, hereafter referred to as Auckland, suggest it to be a strongly metamorphosed fragment from the interior of a low iron ordinary chondrite (L6) parent asteroid. The occurrence of maskelynite but shock fracturing of olivine and pyroxene indicates Auckland experienced extreme shock metamorphism (S5), likely during Ordovician fragmentation of the asteroid parent. The fusion crust consists of three zones: (1) an innermost zone containing narrow Fe‐Ni‐S‐bearing veins that migrated along pre‐existing shock fractures in olivine and pyroxene; (2) a middle zone in which the meteorite partially melted to form a silicate glass and immiscible blebs of metal and troilite, and is accompanied by unmelted silicate minerals; and (3) an approximately 0.1 mm wide vesicular‐rich outermost layer that largely melted, volatilizing sulfides, before quenching to form glass and olivine. Oxygen isotope values of the bulk rock and/or maskelynite of melted rim and modified substrate are 2–3‰ greater than the meteorite interior and indicate that up to 19% of terrestrial atmospheric O2 was incorporated into the fusion crust during the formation. The fusion crust migrated inwards as ablation occurred, enabling melting, migration, and re‐precipitation ± loss of sulfide and metal components, with the prominent glassy rim therefore forming from an already chemically modified zone.

[1]  M. Burchell,et al.  The fusion crust of the Winchcombe meteorite: A preserved record of atmospheric entry processes , 2023, Meteoritics & Planetary Science.

[2]  G. Howarth,et al.  Rapid characterisation of Mars' mantle reservoirs by in situ laser ablation 87Sr/86Sr analysis of shocked feldspar (maskelynite) , 2022, Geochimica et Cosmochimica Acta.

[3]  A. Pack Isotopic Traces of Atmospheric O2 in Rocks, Minerals, and Melts , 2021 .

[4]  Z. Sharp,et al.  An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2 , 2020 .

[5]  A. Yamaguchi,et al.  To be or not to be oxidized: A case study of olivine behavior in the fusion crust of ureilite A 09368 and H chondrites A 09004 and A 09502 , 2019, Meteoritics & planetary science.

[6]  M. Zolensky,et al.  The Sariçiçek howardite fall in Turkey: Source crater of HED meteorites on Vesta and impact risk of Vestoids , 2019, Meteoritics & Planetary Science.

[7]  Michael E. Zolensky,et al.  The Creston, California, meteorite fall and the origin of L chondrites , 2019, Meteoritics & Planetary Science.

[8]  D. Stöffler,et al.  Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system , 2018 .

[9]  A. Tomkins,et al.  The mineralogy and petrology of I-type cosmic spherules: Implications for their sources, origins and identification in sedimentary rocks , 2017 .

[10]  T. Sharp,et al.  Back-transformation of high-pressure minerals in shocked chondrites: Low-pressure mineral evidence for strong shock , 2017 .

[11]  M. Caffee,et al.  Park Forest (L5) and the asteroidal source of shocked L chondrites , 2017 .

[12]  B. A. Brown,et al.  The oxygen isotopes , 2017 .

[13]  M. Rehkämper,et al.  Fe and O isotope composition of meteorite fusion crusts: Possible natural analogues to chondrule formation? , 2015 .

[14]  B. Girten,et al.  Fall, recovery, and characterization of the Novato L6 chondrite breccia , 2014 .

[15]  E. Scott,et al.  Classification of Meteorites and Their Genetic Relationships , 2014 .

[16]  L. Taylor,et al.  Meteorite fusion crust variability , 2009 .

[17]  Charles S. Cockell,et al.  Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment , 2008 .

[18]  A. Pack,et al.  Determination of oxygen triple isotope ratios of silicates without cryogenic separation of NF3- technique with application to analyses of technical O2 gas and meteorite classification. , 2007, Rapid communications in mass spectrometry : RCM.

[19]  M. Trieloff,et al.  L‐chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar‐39 Ar dating , 2007 .

[20]  M. Thiemens HISTORY AND APPLICATIONS OF MASS-INDEPENDENT ISOTOPE EFFECTS , 2006 .

[21]  T. Higuchi,et al.  OXYGEN ISOTOPES IN THE SOLAR SYSTEM. , 2006 .

[22]  R. Brathwaite,et al.  Mineralogical and stable isotope studies of gold–arsenic mineralisation in the Sams Creek peralkaline porphyritic granite, South Island, New Zealand , 2006 .

[23]  Alan E. Rubin,et al.  Thermal Metamorphism in Chondrites , 2006 .

[24]  D. Revelle,et al.  Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere , 2005 .

[25]  R. Clayton,et al.  The fall, recovery, and classification of the Park Forest meteorite , 2004 .

[26]  Chang-de,et al.  Kamacite and olivine in ordinary chondrites : Intergroup and intragroup relationships , 2002 .

[27]  A. Rubin Petrologic, geochemical and experimental constraints on models of chondrule formation , 2000 .

[28]  M. Grady,et al.  Unequilibrated assemblages of sulphide, metal and oxide in the fusion crusts of the enstatite chondrite meteorites , 1999, Mineralogical Magazine.

[29]  A. Goresy,et al.  The nature of maskelynite in shocked meteorites: Not diaplectic glass but a glass quenched from shock-induced dense melt at high pressures , 1999 .

[30]  M. Grady,et al.  The fusion crusts of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials , 1999 .

[31]  Miller,et al.  High precision delta(17)O isotope measurements of oxygen from silicates and other oxides: method and applications. , 1999, Rapid communications in mass spectrometry : RCM.

[32]  H. McSween,et al.  Shock features in iron-nickel metal and troilite of L-group ordinary chondrites , 1996 .

[33]  H. Haack,et al.  Meteoritic, Asteroidal, and Theoretical Constraints on the 500 Ma Disruption of theLChondrite Parent Body , 1996 .

[34]  M. Norman,et al.  39Ar40Ar age and petrology of Chico: Large-scale impact melting on the L chondrite parent body , 1995 .

[35]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[36]  F. Wlotzka A Weathering Scale for the Ordinary Chondrites , 1993 .

[37]  R. Clayton,et al.  Oxygen isotope studies of ordinary chondrites , 1991 .

[38]  G. Lofgren,et al.  Dynamic crystallization study of barred olivine chondrules , 1990 .

[39]  Z. Sharp A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides , 1990 .

[40]  R. Clayton,et al.  Oxygen Isotope Classification of Carbonaceous Chondrites , 1989 .

[41]  M. Weisberg Barred olivine chondrules in ordinary chondrites , 1987 .

[42]  R. Clayton,et al.  Oxygen isotopes in deep sea spherules , 1984 .

[43]  R. Clayton,et al.  Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites , 1983 .

[44]  M. Duke Meteorites: A Petrologic-Chemical Synthesis , 1982 .

[45]  D. Revelle A quasi-simple ablation model for large meteorite entry: theory vs observations , 1979 .

[46]  G. Wasserburg,et al.  The identification of early condensates from the solar nebula , 1973 .

[47]  W. R. Schmus,et al.  The composition and structural state of feldspar from chondritic meteorites , 1968 .

[48]  G. Wetherill,et al.  Rubidium-strontium age of hypersthene (L) chondrites , 1968 .

[49]  John A. Wood,et al.  A chemical-petrologic classification for the chondritic meteorites. , 1967 .

[50]  Klaus Keil,et al.  The iron, magnesium, and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites , 1964 .

[51]  R. Clayton,et al.  The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis , 1963 .

[52]  F. C. Leonard On the Classification of Meteorites , 1944 .