Wavelets with convolution-type orthogonality conditions

Wavelets with free parameters are constructed using a convolution-type orthogonality condition. First, finer and coarser scaling function spaces are introduced with the help of a two-scale relation for scaling functions. An inner product and a norm having convolution parameters are defined in the finer scaling function space, which becomes a Hilbert space as a result. The finer scaling function space can be decomposed into the coarser one and its orthogonal complement. A wavelet function is constructed as a mother function whose shifted functions form an orthonormal basis in the complement space. Such wavelet functions contain the Daubechies' compactly supported wavelets as a special case. In some restricted cases, several symmetric and almost compactly supported wavelets are constructed analytically by tuning free convolution parameters contained in the wavelet functions.