GPEC: A Real-Time–Capable Tokamak Equilibrium Code

Abstract A new parallel equilibrium reconstruction code for tokamak plasmas—the Garching Parallel Equilibrium Code (GPEC)—is presented. GPEC allows one to compute equilibrium flux distributions sufficiently accurate to derive parameters for plasma control within 1 ms of run time, which enables real-time applications at the ASDEX Upgrade (AUG) experiment and other machines with a control cycle of at least this size. The underlying algorithms are based on the well-established off-line–analysis code CLISTE, following the classical concept of iteratively solving the Grad-Shafranov equation and feeding in diagnostic signals from the experiment. The new code adopts a hybrid parallelization scheme for computing the equilibrium flux distribution and extends the fast, shared-memory-parallel Poisson solver that we have described previously by a distributed computation of the individual Poisson problems corresponding to different basis functions. The code is based entirely on open-source software components and runs on standard server hardware and software environments. The real-time capability of GPEC is demonstrated by performing an off-line computation of a sequence of 1000 flux distributions that are taken from 1 s of operation of a typical AUG discharge and deriving the relevant control parameters with a time resolution of 1 ms. On the current server hardware, the new code allows employing a grid size of 32 × 64 zones for the spatial discretization and up to 15 basis functions. It takes into account about 90 diagnostic signals while using up to four equilibrium iterations and computing more than 20 plasma-control parameters, including the computationally expensive safety factor q on at least four different levels of the normalized flux.

[1]  R. Lüst,et al.  Axialsymmetrische magnetohydrodynamische Gleichgewichtskonfigurationen , 1957 .

[2]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[3]  Blaise Faugeras,et al.  Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time , 2009, J. Comput. Phys..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Weston M. Stacey,et al.  Fusion Plasma Physics , 2005 .

[6]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[7]  Patrick J. McCarthy,et al.  Magnetic equilibrium reconstruction using geometric informationfrom temperature measurements at ASDEX upgrade , 2013 .

[8]  Weston M. Stacey,et al.  Fusion Plasma Physics: STACEY:FUSION PLASMA 2/E O-BK , 2012 .

[9]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  Stefano Coda,et al.  Tokamak equilibrium reconstruction code LIUQE and its real time implementation , 2015 .

[12]  Anders Wallander,et al.  ITER Instrumentation and Control System towards Long Pulse Operation , 2012 .

[13]  Jack Dongarra,et al.  Preface: Basic Linear Algebra Subprograms Technical (Blast) Forum Standard , 2002 .

[14]  P. McCarthy,et al.  The CLISTE Interpretive Equilibrium Code , 1999 .

[15]  David Allan Humphreys,et al.  Chapter 8: Plasma operation and control , 2007 .

[16]  Gerhard Raupp,et al.  Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEW RT , 2010 .

[17]  K. Lackner,et al.  Computation of ideal MHD equilibria , 1976 .

[18]  W. Treutterer,et al.  A data acquisition system for real-time magnetic equilibrium reconstruction on ASDEX Upgrade and its application to NTM stabilization experiments , 2013 .

[19]  L. Giannone,et al.  Parallel equilibrium algorithm for real-time control of tokamak plasmas , 2012 .

[20]  L. Giannone,et al.  A REAL-TIME GRAD-SHAFRANOV PDE SOLVER AND MIMO CONTROLLER USING GRAPHICAL DATAFLOW PROGRAMMING , 2012 .

[21]  Jack Dongarra,et al.  Special Issue on Program Generation, Optimization, and Platform Adaptation , 2005, Proc. IEEE.

[22]  L. Giannone,et al.  A Parallel Grad-Shafranov Solver for Real-Time Control of Tokamak Plasmas , 2012 .

[23]  P. J. Mc Carthy Identification of edge-localized moments of the current density profile in a tokamak equilibrium from external magnetic measurements , 2011 .

[24]  Timothy Goodman,et al.  Active control of MHD instabilities by ECCD in ASDEX Upgrade , 2005 .

[25]  B. Braams,et al.  Fast determination of plasma parameters through function parametrization , 1986 .

[26]  L. L. Lao,et al.  Equilibrium analysis of current profiles in tokamaks , 1990 .

[27]  L. L. Lao,et al.  Real time equilibrium reconstruction for tokamak discharge control , 1998 .

[28]  Yong Guo,et al.  Fast equilibrium reconstruction for tokamak discharge control based on GPU , 2013 .

[29]  E. Joffrin,et al.  Chapter 6: Steady state operation , 2007 .

[30]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[31]  L. Lao,et al.  Reconstruction of current profile parameters and plasma shapes in tokamaks , 1985 .

[32]  K. Lackner,et al.  Computation of Axisymmetric MHD Equilibria , 1975 .