The use of computer simulation of merged variation to predict rework levels on ship's hull blocks

In the modular construction of ships, significant productivity losses can occur during the erection stage, when the modules, or hull blocks, are joined together. Frequently, adjacent blocks do not fit together properly, and rework of one or both of the mating block interfaces is necessary to correct the problem. The specific cause of rework is the variation of plate edges at the block interface, which is itself a cumulative product of numerous manufacturing variations inherent in hull block construction. Variation in manufacturing is unavoidable, but not uncontrollable. The application of accuracy control techniques in shipbuilding has proven that a statistical analysis of variation makes possible an accurate prediction of its effects. This paper presents an examination of block interface variation, and the subsequent development of a computer simulation method of predicting rework levels on those blocks. The complex interaction of all the edges' random variations at the block interface gives rise to a unique rework probability distribution. This probability distribution is evaluated by means of the computer simulation program that provides estimates of the average rework anticipated, the shape of the probability curve, and other parameters. Similar predictions are also available for cost and labor of required rework. In addition to predicting rework levels, the simulation program can be a useful tool for reducing those levels.