Localization of growth estimates using non-parametric imputation methods
暂无分享,去创建一个
Annika Kangas | Matti Maltamo | Susanna Sironen | M. Maltamo | A. Kangas | J. Kalliovirta | S. Sironen | J. Kalliovirta
[1] Timothy G. Gregorie,et al. Generalized Error Structure for Forestry Yield Models , 1987, Forest Science.
[2] W. Cleveland,et al. Smoothing by Local Regression: Principles and Methods , 1996 .
[3] Rafael Calama,et al. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach , 2005 .
[4] Hans Gustav Gustavsen,et al. Kivennäismaiden talousmetsien pysyvät (INKA ja TINKA) kokeet: suunnitelmat, mittausmenetelmät ja aineistojen rakenteet . , 1988 .
[5] Nicholas C. Coops,et al. Estimating stand structural details using nearest neighbor analyses to link ground data, forest cover maps, and Landsat imagery , 2008 .
[6] P. Mahalanobis. On the generalized distance in statistics , 1936 .
[7] W. Cleveland. Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .
[8] Hannu Hökkä,et al. Models for predicting stand development in MELA System , 2002 .
[9] Annika Kangas,et al. Application of nearest-neighbour regression for generalizing sample tree information , 1997 .
[10] Andrew W. Moore,et al. Locally Weighted Learning , 1997, Artificial Intelligence Review.
[11] K. Korhonen,et al. Generalizing sample tree information with semiparametric and parametric models. , 1995 .
[12] Annika Kangas,et al. SIMO – SIMulointi ja Optimointi uuteen metsäsuunnitteluun , 1970 .
[13] M. Maltamo,et al. The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .
[14] Albert R. Stage,et al. Most Similar Neighbor: An Improved Sampling Inference Procedure for Natural Resource Planning , 1995, Forest Science.
[15] Annika Kangas,et al. Estimating Individual Tree Growth with the k-Nearest Neighbour and k-Most Similar Neighbour Methods , 2001 .
[16] Antti Mäkinen,et al. SIMO: An adaptable simulation framework for multiscale forest resource data , 2009 .
[17] K. Lowell,et al. Spatial Accuracy Assessment : Land Information Uncertainty in Natural Resources , 1999 .
[18] Ronald E. McRoberts,et al. Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique , 2002 .
[19] Annika Kangas,et al. Estimating individual tree growth with nonparametric methods , 2003 .
[20] S. R. Searle,et al. Linear Models For Unbalanced Data , 1988 .
[21] Annika Kangas,et al. Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution , 1998 .
[22] Jouko Laasasenaho. Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .
[23] N. Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .
[24] W. Härdle. Applied Nonparametric Regression , 1991 .
[25] J. Lappi. Calibration of Height and Volume Equations with Random Parameters , 1991, Forest Science.
[26] David A. Ratkowsky,et al. Problems of hypothesis testing of regressions with multiple measurements from individual sampling units , 1984 .
[27] Annika Kangas,et al. Most similar neighbour‐based stand variable estimation for use in inventory by compartments in Finland , 2003 .
[28] Göran Ståhl,et al. Simultaneous Estimations of Forest Parameters using Aerial Photograph Interpreted Data and the k Nearest Neighbour Method , 2001 .