Dirichlet and Neumann problems to critical Emden–Fowler type equations

We describe recent results on attainability of sharp constants in the Sobolev inequality, the Sobolev–Poincaré inequality, the Hardy–Sobolev inequality and related inequalities. This gives us the solvability of boundary value problems to critical Emden–Fowler equations.

[1]  Meijun Zhu On the extremal functions of Sobolev-Poincaré inequality , 2004 .

[2]  A. Nazarov,et al.  On solvability of the Dirichlet problem to the semilinear Schrödinger equation with singular potential , 2007 .

[3]  A ground state alternative for singular Schrodinger operators , 2004, math/0411658.

[4]  B. Kawohl,et al.  The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞ , 2004 .

[5]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[6]  E. Seneta Regularly varying functions , 1976 .

[7]  A. Nazarov Hardy-Sobolev Inequalities in a Cone , 2006 .

[8]  Y. Pinchover,et al.  Ground state alternative for p-Laplacian with potential term , 2005 .

[9]  Henrik Egnell Positive solutions of semilinear equations in cones , 1992 .

[10]  Existence of minimizers for Schrödinger operators under domain perturbations with application to Hardy's inequality , 2004, math/0410078.

[11]  A. Nazarov,et al.  On Some Properties of Extremals in a Variational Problem Generated by the Sobolev Embedding Theorem , 2004 .

[12]  Nassif Ghoussoub,et al.  Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents , 2000 .

[13]  W. Allegretto,et al.  A Picone's identity for the p -Laplacian and applications , 1998 .

[14]  Neil S. Trudinger,et al.  On harnack type inequalities and their application to quasilinear elliptic equations , 1967 .

[15]  C. Villani,et al.  A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .

[16]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[17]  C. Bandle,et al.  Green’s function, harmonic transplantation, and best Sobolev constant in spaces of constant curvature , 1998 .

[18]  T. Aubin,et al.  Problèmes isopérimétriques et espaces de Sobolev , 1976 .

[19]  TOSHIHIRO ISHIBASHI,et al.  On Fully Nonlinear PDEs Derived from Variational Problems of Lp Norms , 2001, SIAM J. Math. Anal..

[20]  J. Fleckinger,et al.  Boundary Value Problems for theq — Laplacian on N , 2001 .

[21]  Changshou Lin Locating the peaks of solutions via the maximum principle: I. The Neumann problem , 2001 .

[22]  G. Mancini,et al.  THE NEUMANN PROBLEM FOR ELLIPTIC EQUATIONS WITH CRITICAL NONLINEARITY , 1991 .

[23]  M. Belloni,et al.  Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators , 2003 .

[24]  N. Ghoussoub,et al.  Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth , 2005, math/0503276.

[25]  Henrik Egnell Elliptic boundary value problems with singular coefficients and critical nonlinearities , 1989 .

[26]  Haim Brezis,et al.  Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents Haim Brezis , 2022 .

[27]  The effect of curvature on the best constant in the Hardy–Sobolev inequalities , 2005, math/0503025.

[28]  L. Peletier,et al.  Best Sobolev constants and quasi‐linear elliptic equations with critical growth on spheres , 2005 .

[29]  Michael Taylor,et al.  The ̄∂-Neumann Problem , 1996 .

[30]  Optimal Sobolev Inequalities of Arbitrary Order on Compact Riemannian Manifolds , 1998 .

[31]  L. Peletier,et al.  Best Sobolev constants and Emden equations for the critical exponent in S $^3$ , 1999 .

[32]  E. Hebey,et al.  Meilleures constantes dans le théorème d'inclusion de Sobolev , 1992 .

[33]  Xu-jia Wang Neumann problems of semilinear elliptic equations involving critical Sobolev exponents , 1991 .

[34]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .

[35]  Nassif Ghoussoub,et al.  Hardy–Sobolev critical elliptic equations with boundary singularities , 2004 .

[36]  Pierre-Louis Lions,et al.  Convex symmetrization and applications , 1997 .