A Second Order Approximation for Quasilinear Non-Fickian Diffusion Models

Abstract. In this paper initial boundary value problems, defined using quasilinear diffusion equations of Volterra type, are considered. These equations arise for instance to describe diffusion processes in viscoelastic media whose behavior is represented by a Voigt–Kelvin model or a Maxwell model. A finite difference discretization defined on a general non-uniform grid with second order convergence order in space is proposed. The analysis does not follow the usual splitting of the global error using the solution of an elliptic equation induced by the integro-differential equation. The new approach enables us to reduce the smoothness required to the theoretical solution when the usual split technique is used. Non-singular and singular kernels are considered. Numerical simulations which show the effectiveness of the method are included.

[1]  Araújo,et al.  THE EFFECT OF MEMORY TERMS IN DIFFUSION PHENOMENA , 2006 .

[2]  Daniel M. Tartakovsky,et al.  Perspective on theories of non-Fickian transport in heterogeneous media , 2009 .

[3]  J. Humphrey Continuum biomechanics of soft biological tissues , 2003 .

[4]  Jay D. Humphrey,et al.  Review Paper: Continuum biomechanics of soft biological tissues , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Donald S. Cohen,et al.  A mathematical model for a dissolving polymer , 1995 .

[6]  Mario Grassi,et al.  Mathematical modelling and controlled drug delivery: matrix systems. , 2005, Current drug delivery.

[7]  S. Fedotov TRAVELING WAVES IN A REACTION-DIFFUSION SYSTEM : DIFFUSION WITH FINITE VELOCITY AND KOLMOGOROV-PETROVSKII-PISKUNOV KINETICS , 1998 .

[8]  C. Maas A hyperbolic dispersion equation to model the bounds of a contaminated groundwater body , 1999 .

[9]  J. A. Ferreira,et al.  Looking for the Lost Memory in Diffusion-Reaction Equations , 2010 .

[10]  Simon Shaw,et al.  Some partial differential Volterra equation problems arising in viscoelasticity , 1997 .

[11]  Amin Mehrabian,et al.  General solutions to poroviscoelastic model of hydrocephalic human brain tissue. , 2011, Journal of theoretical biology.

[12]  L. Pinto,et al.  Supraconvergence and supercloseness in Volterra equations , 2012 .

[13]  Sergei Fedotov,et al.  Probabilistic approach to a proliferation and migration dichotomy in tumor cell invasion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Etienne Emmrich Supraconvergence and Supercloseness of a Discretisation for Elliptic Third-kind Boundary-value Problems on Polygonal Domains , 2007 .

[15]  José Augusto Ferreira,et al.  Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation , 2007 .

[16]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[17]  R. D. Grigorieff,et al.  Supraconvergence and Supercloseness of a Scheme for Elliptic Equations on Nonuniform Grids , 2006 .

[18]  David A. Edwards,et al.  Non‐fickian diffusion in thin polymer films , 1996 .

[19]  H. Yin Weak and classical solutions of some nonlinear Volterra integrodifferential equations , 1992 .

[20]  L. Brinson,et al.  Polymer Engineering Science and Viscoelasticity: An Introduction , 2007 .

[21]  L. Catherine Brinson,et al.  Polymer Engineering Science and Viscoelasticity , 2008 .

[22]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[23]  Vidar Thomée,et al.  Numerical solution of an evolution equation with a positive-type memory term , 1993, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[24]  S. Hassanizadeh On the transient non-Fickian dispersion theory , 1996 .

[25]  D. A. Edwards A spatially nonlocal model for polymer-penetrant diffusion , 2001 .

[26]  L. Pinto,et al.  H1-second order convergent estimates for non-Fickian models , 2011 .

[27]  David A. Edwards,et al.  An Unusual Moving Boundary Condition Arising in Anomalous Diffusion Problems , 1995, SIAM J. Appl. Math..

[28]  E. Emmrich,et al.  Supraconvergence of a Finite Difference Scheme for Elliptic Boundary Value Problems of the Third Kind in Fractional Order Sobolev Spaces , 2006 .

[29]  S. Fedotov,et al.  Nonuniform reaction rate distribution for the generalized Fisher equation: ignition ahead of the reaction front. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Vidar Thomée,et al.  Discretization with variable time steps of an evolution equation with a positive-type memory term , 1996 .

[31]  Paula de Oliveira,et al.  Qualitative behavior of numerical traveling solutions for reaction–diffusion equations with memory , 2005 .

[32]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[33]  M. Grasselli,et al.  Abstract nonlinear Volterra integrodifferential equations with nonsmooth kernels , 1991 .

[34]  A. Iomin,et al.  Migration and proliferation dichotomy in tumor-cell invasion. , 2006, Physical review letters.

[35]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[36]  José Augusto Ferreira,et al.  Reaction-diffusion in viscoelastic materials , 2012, J. Comput. Appl. Math..

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  Rolf Dieter Grigorieff,et al.  Supraconvergence of a finite difference scheme for solutions in Hs(0, L) , 2005 .