Alfvén wings in the lunar wake: The role of pressure gradients

Strongly conducting or magnetized obstacles in a flowing plasma generate structures called Alfvén wings, which mediate momentum transfer between the obstacle and the plasma. Nonconducting obstacles such as airless planetary bodies can generate such structures, which, however, have so far been seen only in sub‐Alfvénic regime. A novel statistical analysis of simultaneous measurements made by two ARTEMIS satellites, one in the solar wind upstream of the Moon and one in the downstream wake, and comparison of the data with results of a three‐dimensional hybrid model of the interaction reveal that the perturbed plasma downstream of the Moon generates Alfvén wings in super‐Alfvénic solar wind. In the wake region, magnetic field lines bulge toward the Moon and the plasma flows are significantly perturbed. We use the simulation to show that some of the observed bends of the field result from field‐aligned currents. The perturbations in the wake thus arise from a combination of compressional and Alfvénic perturbations. Because of the super‐Alfvénic background flow of the solar wind, the two Alfvén wings fold back to form a small intersection angle. The currents that form the Alfvén wing in the wake are driven by both plasma flow deceleration and a gradient of plasma pressure, positive down the wake from the region just downstream of the Moon. Such Alfvén wing structures, caused by pressure gradients in the wake and the resulting plasma slowdown, should exist downstream of any nonconducting body in a super‐Alfvénic plasma flow.

[1]  R. Walker,et al.  Io's Interaction with the Plasma Torus: Multi-Species Hybrid Simulations , 2016 .

[2]  R. Rankin,et al.  Properties of the lunar wake predicted by analytic models and hybrid‐kinetic simulations , 2015 .

[3]  Peter A. Delamere,et al.  Magnetotails in the solar system , 2015 .

[4]  W. L. Liu,et al.  Three‐dimensional lunar wake reconstructed from ARTEMIS data , 2014 .

[5]  K. Glassmeier,et al.  Stellar winds and planetary bodies simulations: Lunar type interaction in super-Alfvénic and sub-Alfvénic flows , 2013 .

[6]  Yoshifumi Futaana,et al.  The lunar wake current systems , 2013 .

[7]  D. D. Zeeuw,et al.  Three-dimensional MHD simulation of the lunar wake , 2013, Science China Earth Sciences.

[8]  M. Dougherty,et al.  Analysis of Cassini magnetic field observations over the poles of Rhea , 2012 .

[9]  C. Russell,et al.  Perpendicular flow deviation in a magnetized counter-streaming plasma , 2012 .

[10]  Yoshifumi Futaana,et al.  The interaction between the Moon and the solar wind , 2011, Earth, Planets and Space.

[11]  W. Ip,et al.  A 3D hybrid simulation study of the electromagnetic field distributions in the lunar wake , 2011 .

[12]  Vassilis Angelopoulos,et al.  The ARTEMIS Mission , 2011 .

[13]  William M. Farrell,et al.  New views of the lunar plasma environment , 2011 .

[14]  Krishan K. Khurana,et al.  Properties of Ganymede's magnetosphere inferred from improved three-dimensional MHD simulations , 2009 .

[15]  Kazushi Asamura,et al.  Solar wind proton reflection at the lunar surface: Low energy ion measurement by MAP‐PACE onboard SELENE (KAGUYA) , 2008 .

[16]  R. Abiad,et al.  The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .

[17]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[18]  Christopher T. Russell,et al.  Magnetic portraits of Tethys and Rhea , 2008 .

[19]  A. Ridley Alfvén wings at Earth's magnetosphere under strong interplanetary magnetic fields , 2007 .

[20]  W. Farrell,et al.  A Dynamic Fountain Model for Lunar Dust , 2005 .

[21]  W. Ip,et al.  Resistive MHD simulations of Ganymede's magnetosphere 1. Time variabilities of the magnetic field topology , 2002 .

[22]  J. Steinberg,et al.  Wind observations of extreme ion temperature anisotropies in the lunar wake , 2002 .

[23]  M. Kivelson,et al.  MHD simulations of Io's interaction with the plasma torus , 1998 .

[24]  Steven Peter Joy,et al.  The magnetic field and magnetosphere of Ganymede , 1997 .

[25]  William M. Farrell,et al.  Observations of the lunar plasma wake from the WIND spacecraft on December 27, 1994 , 1996 .

[26]  H. Zook,et al.  Large scale lunar horizon glow and a high altitude lunar dust exosphere , 1991 .

[27]  N. Stone,et al.  The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics , 1983 .

[28]  M. Kivelson,et al.  Io and its plasma environment , 1980 .

[29]  C. Goertz Io's interaction with the plasma torus , 1980 .

[30]  F. M. Neubauer,et al.  Nonlinear standing Alfvén wave current system at Io: Theory , 1980 .

[31]  D. R. Criswell,et al.  Surveyor observations of lunar horizon-glow , 1974 .

[32]  F. S. Johnson,et al.  Lunar atmospheric composition results from Apollo 17 , 1973 .

[33]  N. Ness,et al.  Observations and interpretation of the lunar mach cone , 1970 .

[34]  A. England,et al.  Electrical conductivity of the Moon , 1968 .

[35]  N. Ness,et al.  Early results from the magnetic field experiment on lunar Explorer 35 , 1967 .

[36]  E. F. Lyon,et al.  Explorer 35 plasma measurements in the vicinity of the moon. , 1967 .

[37]  J. Mihalov,et al.  Diamagnetic Solar-Wind Cavity Discovered behind Moon , 1967, Science.

[38]  D. Colburn,et al.  The intrinsic magnetic field of the Moon , 1967 .

[39]  S. D. Drell,et al.  Drag and propulsion of large satellites in the ionosphere: An Alfvén propulsion engine in space , 1965 .

[40]  S. D. Drell,et al.  DRAG AND PROPULSION OF LARGE SATELLITES IN THE IONOSPHERE. AN ALFVEN PROPULSION ENGINE IN SPACE , 1965 .