An Effective Method for Canopy Chlorophyll Content Estimation of Marsh Vegetation Based on Multiscale Remote Sensing Data

High-precision canopy chlorophyll content (CCC) inversion for marsh vegetation is of great significance for marsh protection and restoration. However, it is difficult to collect the CCC measured data for marsh vegetation that matches the pixel scale of remote sensing image. This article proposes a new method based on unmanned aerial vehicle (UAV) multispectral images to obtain multiscale marsh vegetation CCC sample data. A random forest (RF) regression algorithm was used to evaluate the application performance of GF-1 wide field view (WFV), Landsat-8 Operational Land Imager (OLI), and Sentinel-2 multispectral instrument (MSI) satellite remote sensing data in marsh vegetation CCC inversion. In addition, parameter optimization of the RF regression model was used to construct an optimization algorithm suitable for marsh vegetation, and the importance of input variables was quantitatively evaluated. The results showed that the UAV multispectral images assisted in the acquisition of marsh vegetation CCC sample data, as the method expanded the number of CCC samples while quantifying the CCC sample data collection accuracy [R2 ≥ 0.86, root mean square error (RMSE) ≤ 6.98 SPAD], which improved the CCC inversion accuracy compared with traditional sampling methods. Extracting pure vegetation pixels through binary classification reduces the uncertainty of the UAV-scale CCC inversion results. Parameter optimization of the RF regression model further improves the CCC inversion accuracy at GF-1 WFV, Landsat-8 OLI, and Sentinel-2 MSI scales. Among the three satellite remote sensing data, Sentinel-2 MSI achieved the highest CCC inversion accuracy for marsh vegetation (R2 = 0.79, RMSE = 10.96 SPAD) due to the inclusion of red-edge bands that are more sensitive to vegetation properties. Red-edge Chlorophyll Index (Clred-edge) and Green Chlorophyll Index (Clgreen) have the highest influence on the CCC inversion accuracy among input variables.

[1]  Anatoly A. Gitelson,et al.  Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico — A methodological approach using MODIS , 2016 .

[2]  S. Phinn,et al.  Assessment of multi-resolution image data for mangrove leaf area index mapping , 2016 .

[3]  A. Gitelson,et al.  Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves , 2006 .

[4]  Yuhong He,et al.  Estimating and mapping chlorophyll content for a heterogeneous grassland: Comparing prediction power of a suite of vegetation indices across scales between years , 2017 .

[5]  Thuy Le Toan,et al.  Biomass assessment in the Cameroon savanna using ALOS PALSAR data , 2014 .

[6]  Onisimo Mutanga,et al.  High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[7]  Yu Qin,et al.  Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau , 2016 .

[8]  Yingying Dong,et al.  Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[9]  A. Skidmore,et al.  Retrieval of Specific Leaf Area From Landsat-8 Surface Reflectance Data Using Statistical and Physical Models , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  Julia Reschke,et al.  Continuous field mapping of Mediterranean wetlands using sub-pixel spectral signatures and multi-temporal Landsat data , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[11]  Meiling Liu,et al.  A hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[12]  Karen E. Joyce,et al.  A spatial vulnerability assessment of monsoonal wetland habitats to para grass invasion in Kakadu National Park, northern Australia , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[13]  Vanni Nardino,et al.  Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[14]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[15]  Danfeng Sun,et al.  Desert vegetation-habitat complexes mapping using Gaofen-1 WFV (wide field of view) time series images in Minqin County, China , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[16]  Luis Santamaría,et al.  Modeling Biomass Production in Seasonal Wetlands Using MODIS NDVI Land Surface Phenology , 2017, Remote. Sens..

[17]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[18]  Chao Gao,et al.  Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. , 2017, The Science of the total environment.

[19]  L. Deng,et al.  UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[20]  Mohammadmehdi Saberioon,et al.  Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[21]  Jing M. Chen,et al.  emporal disparity in leaf chlorophyll content and leaf area index cross a growing season in a temperate deciduous forest , 2014 .

[22]  Chen Shi,et al.  Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[23]  Ahmad Al Bitar,et al.  Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data , 2016 .

[24]  S. Rigatti Random Forest. , 2017, Journal of insurance medicine.

[25]  A. Gitelson,et al.  Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production , 2014 .

[26]  Bai Zhang,et al.  Comparison of object-based and pixel-based Random Forest algorithm for wetland vegetation mapping using high spatial resolution GF-1 and SAR data , 2017 .

[27]  Jan G. P. W. Clevers,et al.  Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison , 2015 .

[28]  Jan G. P. W. Clevers,et al.  Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data - potential of unmanned aerial vehicle imagery , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[29]  Frédéric Baret,et al.  Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops , 2019, Remote Sensing of Environment.

[30]  H. Medrano,et al.  Sediment connectivity linked to vegetation using UAVs: High-resolution imagery for ecosystem management , 2019, Science of The Total Environment.

[31]  Frédéric Baret,et al.  Estimating leaf chlorophyll content in sugar beet canopies using millimeter- to centimeter-scale reflectance imagery , 2017 .

[32]  A. Huete,et al.  Development of a two-band enhanced vegetation index without a blue band , 2008 .

[33]  Xiaotong Zhang,et al.  A Robust Algorithm for Estimating Surface Fractional Vegetation Cover from Landsat Data , 2017, Remote. Sens..

[34]  Jennifer Pontius,et al.  Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty , 2014 .

[35]  Xiaoxia Wang,et al.  Comparison of Four Machine Learning Methods for Generating the GLASS Fractional Vegetation Cover Product from MODIS Data , 2016, Remote. Sens..

[36]  H. Feilhauer,et al.  Are remotely sensed traits suitable for ecological analysis? A case study of long-term drought effects on leaf mass per area of wetland vegetation , 2018 .

[37]  Hao Hu,et al.  Modeling Leaf Image, Chlorophyll Fluorescence, Reflectance From SPAD Readings , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[38]  Li Wang,et al.  The Tidal Marsh Inundation Index (TMII): An inundation filter to flag flooded pixels and improve MODIS tidal marsh vegetation time-series analysis , 2017 .

[39]  A. B. M. Shawkat Ali,et al.  A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat , 2019, Remote. Sens..

[40]  W. Verhoef,et al.  Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX – Sentinel-3 tandem mission multi-sensor data , 2018 .

[41]  M. Vohland,et al.  Downscaling land surface temperatures at regional scales with random forest regression , 2016 .

[42]  Brian O'Connor,et al.  Analysis of Sentinel-2 and RapidEye for Retrieval of Leaf Area Index in a Saltmarsh Using a Radiative Transfer Model , 2019, Remote. Sens..

[43]  Weiguo Jiang,et al.  Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China , 2017 .

[44]  J. Chen Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications , 1996 .

[45]  Edward B. Barbier,et al.  Valuing the storm protection service of estuarine and coastal ecosystems , 2015 .

[46]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[47]  Bin Xu,et al.  Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China , 2019, Ecological Indicators.

[48]  Holly Croft,et al.  Evaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework , 2015 .

[49]  Luis Alonso,et al.  Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation , 2011, IEEE Geoscience and Remote Sensing Letters.

[50]  W. E. Larson,et al.  Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. , 2000 .

[51]  Thomas J. Jackson,et al.  Retrieval of Wheat Growth Parameters With Radar Vegetation Indices , 2014, IEEE Geoscience and Remote Sensing Letters.

[52]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[53]  Marco Heurich,et al.  Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[54]  Frank Veroustraete,et al.  Chlorophyll content mapping of urban vegetation in the city of Valencia based on the hyperspectral NAOC index , 2014 .

[55]  Craig S. T. Daughtry,et al.  A visible band index for remote sensing leaf chlorophyll content at the canopy scale , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[56]  Arko Lucieer,et al.  Poppy crop capsule volume estimation using UAS remote sensing and random forest regression , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[57]  A. Gitelson,et al.  Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC) , 2015 .

[58]  Wei Gong,et al.  Estimating leaf chlorophyll status using hyperspectral lidar measurements by PROSPECT model inversion , 2018, Remote Sensing of Environment.

[59]  Frédéric Baret,et al.  Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data , 2016 .

[60]  Ying Li,et al.  An Optimized Object-Based Random Forest Algorithm for Marsh Vegetation Mapping Using High-Spatial-Resolution GF-1 and ZY-3 Data , 2020, Remote. Sens..

[61]  D. Mao,et al.  Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine , 2021 .

[62]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[63]  Wei Li,et al.  Hyperspectral Estimation of the Chlorophyll Content in Short-Term and Long-Term Restorations of Mangrove in Quanzhou Bay Estuary, China , 2018 .

[64]  Hitendra Padalia,et al.  Evaluation of the Use of Hyperspectral Vegetation Indices for Estimating Mangrove Leaf Area Index in Middle Andaman Island, India , 2018, Remote Sensing Letters.

[65]  Aleixandre Verger,et al.  Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations , 2011 .

[66]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[67]  Marc Olano,et al.  Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure , 2015, Remote. Sens..

[68]  Gui-Song Xia,et al.  Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models , 2018 .

[69]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[70]  Blake M. Allan,et al.  The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems , 2020, Remote Sensing of Environment.

[71]  Frank E. Muller-Karger,et al.  Enabling efficient, large-scale high-spatial resolution wetland mapping using satellites. , 2018 .

[72]  Giovanni Attolico,et al.  Contactless and non-destructive chlorophyll content prediction by random forest regression: A case study on fresh-cut rocket leaves , 2017, Comput. Electron. Agric..

[73]  Gary R. Watmough,et al.  Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation , 2013 .

[74]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[75]  D. Vitt,et al.  Canadian wetlands: Environmental gradients and classification , 1995, Vegetatio.

[76]  Holly Croft,et al.  Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data , 2013 .

[77]  Jinfei Wang,et al.  Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific , 2005 .

[78]  José F. Moreno,et al.  Spectral band selection for vegetation properties retrieval using Gaussian processes regression , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[79]  Anita Simic Milas,et al.  The importance of leaf area index in mapping chlorophyll content of corn under different agricultural treatments using UAV images , 2018 .

[80]  Nandin-Erdene Tsendbazar,et al.  Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[81]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[82]  Pamela L. Nagler,et al.  Evapotranspiration by remote sensing: An analysis of the Colorado River Delta before and after the Minute 319 pulse flow to Mexico , 2017 .