Deterministic evolutionary dynamics: A unifying approach

We tackle three components of evolutionary modelling: payoffs, dynamical systems and equilibrium concepts. Firstly, we merely require that fitness functions are continuous. Secondly, we examine very general classes of dynamics. Thirdly, we give useful parallels to the Nash equilibrium and the evolutionarily stable strategy. Under (weakly) sign-compatible dynamics the change in population share of every (at least one) subgroup present in the population corresponds in sign with its relative fitness. At a saturated equilibrium, each subgroup with positive population share has highest fitness. We examine two evolutionary stability concepts: the evolutionarily stable equilibrium and the generalized evolutionarily stable state.

[1]  Akihiko Matsui,et al.  Best response dynamics and socially stable strategies , 1992 .

[2]  George J. Mailath,et al.  Introduction: Symposium on evolutionary game theory , 1992 .

[3]  Jeroen M. Swinkels Adjustment Dynamics and Rational Play in Games , 1993 .

[4]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[5]  Suzanne Scotchmer,et al.  On the evolution of optimizing behavior , 1991 .

[6]  I. Gilboa,et al.  A Model of Random Matching , 1992 .

[7]  Dolf Talman,et al.  A procedure for finding Nash equilibria in bi-matrix games , 1991, ZOR Methods Model. Oper. Res..

[8]  I. Gilboa,et al.  Social Stability and Equilibrium , 1991 .

[9]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[10]  Michihiro Kandori,et al.  Evolution of Equilibria in the Long Run: A General Theory and Applications , 1995 .

[11]  E. Damme Stability and perfection of Nash equilibria , 1987 .

[12]  E. C. Zeeman,et al.  Population dynamics from game theory , 1980 .

[13]  John Nachbar “Evolutionary” selection dynamics in games: Convergence and limit properties , 1990 .

[14]  G. Debreu,et al.  Excess demand functions , 1974 .

[15]  H. Uzawa,et al.  The Stability of Dynamic Processes , 1961 .

[16]  Jörg Oechssler,et al.  An Evolutionary Interpretation of Mixed-Strategy Equilibria , 1997 .

[17]  Stability analysis for profit-responsive selection mechanisms , 1986 .

[18]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[19]  R. Selten Evolution, learning, and economic behavior , 1991 .

[20]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[21]  G. Burt Cultural Convergence in Historical Cultural Space-Time , 1997 .

[22]  Hugo Sonnenschein,et al.  Market Excess Demand Functions , 1972 .

[23]  D. Friedman EVOLUTIONARY GAMES IN ECONOMICS , 1991 .

[24]  W. Arthur ‘Silicon Valley’ locational clusters: when do increasing returns imply monopoly? , 1990 .

[25]  D. Fudenberg,et al.  Evolutionary Dynamics with Aggregate Shocks , 1992 .

[26]  John H. Nachbar,et al.  Evolution in the finitely repeated prisoner's dilemma , 1992 .

[27]  Josef Hofbauer,et al.  On the occurrence of limit cycles in the Volterra-Lotka equation , 1981 .

[28]  Franz J. Weissing,et al.  Evolutionary stability and dynamic stability in a class of evolutionary normal form games , 1991 .

[29]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[30]  John Metcalfe,et al.  Competition, Fisher's Principle and increasing returns in the selection process , 1994 .

[31]  T. Schelling Micromotives and Macrobehavior , 1978 .

[32]  James Andreoni,et al.  Can evolutionary dynamics explain free riding in experiments , 1991 .

[33]  Gerard van der Laan,et al.  The (2n+1−2)-ray algorithm: A new simplicial algorithm to compute economic equilibria , 1987, Math. Program..

[34]  L. Samuelson Recent advances in evolutionary economics: comments , 1993 .

[35]  Donald G. Saari,et al.  Iterative Price Mechanisms , 1985 .

[36]  R. Rob,et al.  Learning, Mutation, and Long Run Equilibria in Games , 1993 .

[37]  J. Robinson AN ITERATIVE METHOD OF SOLVING A GAME , 1951, Classics in Game Theory.

[38]  Richard T. Boylan Laws of large numbers for dynamical systems with randomly matched individuals , 1992 .

[39]  J. Weibull,et al.  Evolutionary Selection in Normal-Form Games , 1995 .

[40]  J. Sobel,et al.  On the limit points of discrete selection dynamics , 1992 .

[41]  H. Peyton Young,et al.  Stochastic Evolutionary Game Dynamics , 1990 .

[42]  Tilman Börgers,et al.  Learning Through Reinforcement and Replicator Dynamics , 1997 .

[43]  Gérard Debreu Economies with a Finite Set of Equilibria , 1970 .

[44]  K. Arrow,et al.  General Competitive Analysis , 1971 .

[45]  H. Sonnenschein Do Walras' identity and continuity characterize the class of community excess demand functions? , 1973 .

[46]  Jörgen W. Weibull,et al.  Evolutionary Game Theory , 1996 .

[47]  L. Samuelson,et al.  Evolutionary Stability in Asymmetric Games , 1992 .

[48]  R. Mantel On the characterization of aggregate excess demand , 1974 .

[49]  W. Jansen,et al.  A permanence theorem for replicator and Lotka-Volterra systems , 1987 .

[50]  E. Dierker Two Remarks on the Number of Equilibria of an Economy , 1972 .

[51]  V. Crawford An “evolutionary” interpretation of Van Huyck, Battalio, and Beil's experimental results on coordination , 1991 .

[52]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[53]  H. Young,et al.  The Evolution of Conventions , 1993 .

[54]  L. Hurwicz,et al.  ON THE STABILITY OF THE COMPETITIVE EQUILIBRIUM, I1 , 1958 .

[55]  L. Shapley,et al.  Fictitious Play Property for Games with Identical Interests , 1996 .

[56]  E. Zeeman Dynamics of the evolution of animal conflicts , 1981 .