Molecular Targeting with Peptides or Peptide-Polymer Conjugates: Just a Question of Size?

The integrin v 3 is currently being evaluated as a molecular target for antiangiogenic therapies. Several targeting strategies and probes are being studied to enable noninvasive imaging of v 3 expression in vivo. In the September issue of The Journal of Nuclear Medicine, Line et al. investigated peptide-polymer conjugates to exploit the “enhanced permeability and retention” (EPR) effect and high-affinity binding for high-level targeting of v 3 integrins (1).

[1]  H. Ghandehari,et al.  Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[2]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[3]  Horst Kessler,et al.  Noninvasive Visualization of the Activated αvβ3 Integrin in Cancer Patients by Positron Emission Tomography and [18F]Galacto-RGD , 2005, PLoS medicine.

[4]  W. DeGrado,et al.  A push-pull mechanism for regulating integrin function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  H. Ghandehari,et al.  Targeting tumor angiogenic vasculature using polymer-RGD conjugates. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[6]  G. Weber Cancer therapy : molecular targets in tumor-host interactions , 2005 .

[7]  D. Goldenberg,et al.  Perspectives on cancer therapy with radiolabeled monoclonal antibodies. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  L. Kvols,et al.  Peptide receptor radionuclide therapy , 2005 .

[9]  K. Chester,et al.  Engineered single chain antibody fragments for radioimmunotherapy. , 2004, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[10]  Robert J Gillies,et al.  Hitting multiple targets with multimeric ligands , 2004, Expert opinion on therapeutic targets.

[11]  M. Coleman,et al.  Doxorubicin-formaldehyde conjugates targeting alphavbeta3 integrin. , 2004, Molecular cancer therapeutics.

[12]  G. Dive,et al.  Novel RGD-like molecules based on the tyrosine template: design, synthesis, and biological evaluation on isolated integrins alphaVbeta3/alphaIIbbeta3 and in cellular adhesion tests. , 2004, Bioorganic & medicinal chemistry.

[13]  Ryan Park,et al.  MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. , 2004, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.

[14]  E. Koivunen,et al.  Peptide-mediated delivery of therapeutic and imaging agents into mammalian cells. , 2004, Current pharmaceutical design.

[15]  M. Schwaiger,et al.  Radiolabeled carbohydrated somatostatin analogs: a review of the current status. , 2004, Cancer biotherapy & radiopharmaceuticals.

[16]  H. Ghandehari,et al.  Technetium-99m-Labeled N-(2-Hydroxypropyl) Methacrylamide Copolymers: Synthesis, Characterization, and in Vivo Biodistribution , 2004, Pharmaceutical Research.

[17]  Horst Kessler,et al.  First 18F-Labeled Tracer Suitable for Routine Clinical Imaging of sst Receptor-Expressing Tumors Using Positron Emission Tomography , 2004, Clinical Cancer Research.

[18]  K. Gottschalk,et al.  A computational model of transmembrane integrin clustering. , 2004, Structure.

[19]  Sanyog Jain,et al.  Liposomes Modified with Cyclic RGD Peptide for Tumor Targeting , 2004, Journal of drug targeting.

[20]  R. Haubner,et al.  Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. , 2004, Current pharmaceutical design.

[21]  Horst Kessler,et al.  Two-step methodology for high-yield routine radiohalogenation of peptides: (18)F-labeled RGD and octreotide analogs. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[22]  Jean-Luc Coll,et al.  Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. , 2004, Journal of the American Chemical Society.

[23]  Joachim P Spatz,et al.  Activation of integrin function by nanopatterned adhesive interfaces. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  T. Sawada,et al.  Adhesion polypeptides are useful for the prevention of peritoneal dissemination of gastric cancer , 1998, Clinical & Experimental Metastasis.

[25]  Y. Yoo,et al.  Inhibition of tumor metastasis by Arg-Gly-Asp-Ser (RGDS) peptide conjugated with sulfated chitin derivative, SCM-chitin-RGDS , 1993, Clinical & Experimental Metastasis.

[26]  M. Schwaiger,et al.  Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation , 2004 .

[27]  M. Schwaiger,et al.  [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. , 2004, Bioconjugate chemistry.

[28]  J. Bading,et al.  Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[29]  D. Engelman,et al.  Involvement of transmembrane domain interactions in signal transduction by alpha/beta integrins. , 2004, The Journal of biological chemistry.

[30]  J. Bading,et al.  Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. , 2004, Nuclear medicine and biology.

[31]  M. Schwaiger,et al.  First (18)F-labeled tracer suitable for routine clinical imaging of sst receptor-expressing tumors using positron emission tomography. , 2004, Clinical cancer research : an official journal of the American Association for Cancer Research.

[32]  R. Liddington,et al.  Talin Binding to Integrin ß Tails: A Final Common Step in Integrin Activation , 2003, Science.

[33]  R. Schiffelers,et al.  Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[34]  Horst Kessler,et al.  Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. , 2003, Chemistry.

[35]  Jun Fang,et al.  Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. , 2003, International immunopharmacology.

[36]  R. Valkema,et al.  Radiolabelled peptides for tumour therapy: current status and future directions , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[37]  Shelton D Caruthers,et al.  Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. , 2003, Circulation.

[38]  Milind Rajopadhye,et al.  Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. , 2002, Cancer research.

[39]  M. Yeager,et al.  Three-dimensional model of the human platelet integrin αIIbβ3 based on electron cryomicroscopy and x-ray crystallography , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[41]  G. Prestwich,et al.  Cancer-targeted polymeric drugs. , 2002, Current cancer drug targets.

[42]  M. Schwaiger,et al.  Improvement of pharmacokinetics of radioiodinated Tyr(3)-octreotide by conjugation with carbohydrates. , 2002, Bioconjugate chemistry.

[43]  A. Brunger,et al.  Transmembrane signal transduction of the αIIbβ3 integrin , 2002 .

[44]  P. Coleman,et al.  Non-peptide alpha(v)beta(3) antagonists. Part 5: identification of potent RGD mimetics incorporating 2-aryl beta-amino acids as aspartic acid replacements. , 2002, Bioorganic & medicinal chemistry letters.

[45]  Grietje Molema,et al.  Preparation and functional evaluation of RGD-modified proteins as alpha(v)beta(3) integrin directed therapeutics. , 2002, Bioconjugate chemistry.

[46]  Renhao Li,et al.  Oligomerization of the integrin αIIbβ3: Roles of the transmembrane and cytoplasmic domains , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Van de Wiele,et al.  Peptide radiopharmaceuticals for diagnosis and therapy , 2001, European Journal of Nuclear Medicine.

[48]  T. Visser,et al.  Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives , 2001, European Journal of Nuclear Medicine.

[49]  M Schwaiger,et al.  Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[50]  M. Schwaiger,et al.  Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. , 2001, Cancer research.

[51]  L. Kiessling,et al.  Synthetic multivalent ligands in the exploration of cell-surface interactions. , 2000, Current opinion in chemical biology.

[52]  M. Schwaiger,et al.  Carbohydrate Derivatives for Use in Drug Design: Cyclicαv-Selective RGD Peptides , 2000 .

[53]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[54]  S A Wickline,et al.  Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. , 2000, Magnetic resonance in medicine.

[55]  Horst Kessler,et al.  N-methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists , 1999 .

[56]  Horst Kessler,et al.  Radiolabeled αvβ3 Integrin Antagonists: A New Class of Tracers for Tumor Targeting , 1999 .

[57]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[58]  R. Kramer,et al.  Spanning binding sites on allosteric proteins with polymer-linked ligand dimers , 1998, Nature.

[59]  Hiroshi Maeda,et al.  Early Phase Tumor Accumulation of Macromolecules: A Great Difference in Clearance Rate between Tumor and Normal Tissues , 1998, Japanese journal of cancer research : Gann.

[60]  S. Goodman,et al.  Structural and Functional Aspects of RGD-Containing Cyclic Pentapeptides as Highly Potent and Selective Integrin αVβ3 Antagonists , 1996 .

[61]  H. Dvorak,et al.  Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. , 1995, The American journal of pathology.

[62]  Erkki Ruoslahti,et al.  Phage Libraries Displaying Cyclic Peptides with Different Ring Sizes: Ligand Specificities of the RGD-Directed Integrins , 1995, Bio/Technology.

[63]  H. Satoh,et al.  Synthetic Arg-Gly-Asp-Ser analogues of the cell recognition site of fibronectin that retain antimetastatic and anti-cell adhesive properties. , 1993, Biological & pharmaceutical bulletin.

[64]  I. Saiki,et al.  The conjugation of RGDS peptide with CM-chitin augments the peptide-mediated inhibition of tumor metastasis , 1993 .

[65]  R. Timpl,et al.  Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides. , 1992, European journal of biochemistry.

[66]  R. Timpl,et al.  Arg‐Gly‐Asp constrained within cyclic pentapoptides Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1 , 1991, FEBS letters.

[67]  E. Ruoslahti,et al.  Arg-Gly-Asp: A versatile cell recognition signal , 1986, Cell.