Magnetic classification of stony meteorites: 1. Ordinary chondrites

A database of magnetic susceptibility (χ) measurements on different non-ordinary chondrites (C, E, R, and ungrouped) populations is presented and compared to our previous similar work on ordinary chondrites. It provides an exhaustive study of the amount of iron-nickel magnetic phases (essentially metal and magnetite) in these meteorites. In contrast with all the other classes, CM and CV show a wide range of magnetic mineral content, with a two orders of magnitude variation of ?. Whether this is due to primary parent body differences, metamorphism or alteration, remains unclear. C34 and C2 yield similar χ values to the ones shown by CK and CM, respectively. By order of increasing χ, the classes with well-grouped χ are: R << CO < CK ≈ CI < Kak < CR < E ≈ CH < CB. Based on magnetism, EH and EL classes have indistinguishable metal content. Outliers that we suggest may need to have their classifications reconsidered are Acfer 202 (CO), Elephant Moraine (EET) 96026 (C45), Meteorite Hills (MET) 01149, and Northwest Africa (NWA) 521 (CK), Asuka (A)-88198, LaPaz Icefield (LAP) 031156, and Sahara 98248 (R). ? values can also be used to define affinities of ungrouped chondrites, and propose pairing, particularly in the case of CM and CV meteorites.

[1]  M. Zolensky,et al.  A terrestrial origin for sulfate veins in CI1 chondrites , 2001 .

[2]  K. Keil,et al.  The CR chondrite clan: Implications for early solar system processes , 2002 .

[3]  P. Rochette,et al.  Inter-laboratory calibration of low-field magnetic and anhysteretic susceptibility measurements , 2003 .

[4]  B. Lavielle,et al.  The Campos Sales meteorite from Brazil: A lightly shocked L5 chondrite fall , 1998 .

[5]  H. McSween Petrographic variations among carbonaceous chondrites of the Vigarano type , 1977 .

[6]  M. Rowe,et al.  SATURATION MAGNETIZATION MEASUREMENTS OF CARBONACEOUS CHONDRITES , 1986 .

[7]  Mario H. Acuna,et al.  NEAR Magnetic Field Observations at 433 Eros: First Measurements from the Surface of an Asteroid , 2002 .

[8]  M. Funaki,et al.  Matching Martian crustal magnetization and magnetic properties of Martian meteorites , 2005 .

[9]  Daniel T. Britt,et al.  The density and porosity of meteorites from the Vatican collection , 1998 .

[10]  A. Brecher,et al.  Paleomagnetic systematics of ordinary chondrites , 1975 .

[11]  D. Collinson Magnetic properties of the Olivenza meteorite—possible implications for its evolution and an early solar system magnetic field , 1987 .

[12]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[13]  M. Zolensky,et al.  Petrographic, Chemical and Spectroscopic Data on Thermally Metamorphosed Carbonaceous Chondrites , 2002 .

[14]  Tadashi Mori,et al.  Compositional continuity of enstatite chondrites and implications for heterogeneous accretion of the enstatite chondrite parent body , 1997 .

[15]  H. McSween,et al.  Origin of petrofabrics and magnetic anisotropy in ordinary chondrites , 1988 .

[16]  M. Gaffey,et al.  A critical evaluation of oxidation versus reduction during metamorphism of L and LL group chondrites, and implications for asteroid spectroscopy , 2002 .

[17]  D. Strangway,et al.  A paleomagnetic conglomerate test using the Abee E4 meteorite , 1983 .

[18]  M. Zolensky,et al.  Carbide-magnetite assemblages in type-3 ordinary chondrites , 1997 .

[19]  K. Glassmeier,et al.  First direct magnetic field measurements of an asteroidal magnetic field: DS1 at Braille , 2001 .

[20]  R. Binns,et al.  Meteorites from the Nullarbor Region, Western Australia: II. Recovery and classification of 34 new meteorite finds from the Mundrabilla, Forrest, Reid and Deakin areas , 1989 .

[21]  E. J. Schwarz Magnetic properties of pyrrhotite and their use in applied geology and geophysics , 1975 .

[22]  Nagata Takesi Magnetic Classification of Stony Meteorites (IV) , 1979 .

[23]  N. Sugiura Magnetic properties and remanent magnetization of stony meteorites. , 1977 .

[24]  A. Bischoff,et al.  Formation of opaque minerals in CK chondrites , 1995 .

[25]  Mario H. Acuna,et al.  Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data , 2001 .

[26]  C. Sonett Evidence for a primordial magnetic field during the meteorite parent body era , 1978 .

[27]  M. Acuna,et al.  443 Eros: Problems with the meteorite magnetism record in attempting an asteroid match , 2002 .

[28]  P. Wasilewski New magnetic results from Allende C3/V/ , 1981 .

[29]  Subir K. Banerjee,et al.  Single‐domain grain size limits for metallic iron , 1975 .

[30]  J. Martínez-Frías,et al.  The meteorite collection of the National Museum of Natural Sciences, Madrid, Spain: An updated catalog , 2002 .

[31]  I. Kukkonen,et al.  Physical properties of 368 meteorites: Implications for meteorite magnetism and planetary geophysics , 1993 .

[32]  F. Wlotzka A Weathering Scale for the Ordinary Chondrites , 1993 .

[33]  G. Consolmagno,et al.  An Impact Origin for the Foliation of Ordinary Chondrites , 2005 .

[34]  M. Dekkers Magnetic properties of natural pyrrhotite Part I: Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework , 1988 .

[35]  R. Butler,et al.  A Mechanism for Producing Magnetic Remanence in Meteorites and Lunar Samples by Cosmic-Ray Exposure , 1971, Science.

[36]  L. Folco,et al.  The meteorite collection of the Museo Nazionale dell'Antartide in Siena , 2000 .

[37]  Pierre Rochette,et al.  Interest and design of magnetic properties measurements on planetary and asteroidal landers , 2004 .

[38]  D. Rancourt,et al.  Low-spin γ-FeNi(γLS) proposed as a new mineral in FeNi-bearing meteorites: epitaxial intergrowth of γLS and tetrataenite as a possible equilibrium state at ∼20–40 at% Ni , 1995 .

[39]  M. Kivelson,et al.  Magnetic Field Signatures Near Galileo's Closest Approach to Gaspra , 1993, Science.

[40]  F. C. Leonard On the Classification of Meteorites , 1944 .

[41]  V. Sautter,et al.  Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism , 2001 .

[42]  M. Fuhrman,et al.  The magnetic effects of brecciation and shock in meteorites: I. The Ll-chondrites , 1977 .

[43]  F. Senftle,et al.  Magnetic study of magnetite in the Tagish Lake meteorite , 2002 .

[44]  D. Strangway,et al.  Magnetic studies of meteorites , 1988 .

[45]  P. Wasilewski,et al.  Aspects of the validation of magnetic remanence in meteorites , 2000 .

[46]  T. Nagata Meteorite Magnetism and the Early Solar System Magnetic Fields (a Review) , 1979 .

[47]  B. Mason Olivine composition in chondrites , 1963 .

[48]  N. Bhandari,et al.  The Parsa enstatite chondrite , 1980 .

[49]  P. Wasilewski Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite , 1988 .

[50]  M. Funaki,et al.  Magnetic properties of tetrataenite-rich stony meteorites , 1982 .

[51]  G. Arrhenius,et al.  The paleomagnetic record in carbonaceous chondrites: Natural remanence and magnetic properties , 1974 .

[52]  E. E. Larson,et al.  Thermomagnetic analysis of meteorites, 2. C2 chondrites , 1974 .

[53]  G. Cressey,et al.  A Mössbauer spectroscopy and X‐ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism , 2005 .

[54]  P. Bland,et al.  Growth of ferrous olivine in the oxidized CV chondrites during a fluid-assisted thermal metamorphism. , 2003 .

[55]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[56]  R. Carmichael Practical Handbook of Physical Properties of Rocks and Minerals , 1989 .

[57]  G. Dreibus,et al.  Mineralogy and chemistry of Rumuruti: The first meteorite fall of the new R chondrite group , 1994 .

[58]  P. Rochette Magnetic susceptibility of the rock matrix related to magnetic fabric studies , 1987 .

[59]  Pierre Rochette,et al.  Toward a robust normalized magnetic paleointensity method applied to meteorites , 2004 .

[60]  François Lévêque,et al.  Magnetic susceptibility in environmental applications: comparison of field probes , 1999 .

[61]  E. Quirico,et al.  Metamorphic grade of organic matter in six unequilibrated ordinary chondrites , 2003 .

[62]  K. Fabian,et al.  Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 μm to 6 mm , 1996 .

[63]  Monica M. Grady,et al.  Catalogue of Meteorites , 2000 .

[64]  M. Fuhrman,et al.  Magnetism, shock and metamorphism in chondritic meteorites , 1979 .

[65]  W. Morris,et al.  On the lognormal distribution of oxides in igneous rocks, using magnetic susceptibility as a proxy for oxide mineral concentration , 1989 .

[66]  I. Kukkonen,et al.  The petrophysical classification of meteorites , 1993 .

[67]  A. Rubin,et al.  The compositional classification of chondrites: VII. The R chondrite group , 1996 .

[68]  P. Rochette,et al.  Calibration of in situ magnetic susceptibility measurements , 2004 .

[69]  A. Kearsley,et al.  THE RELATIONSHIP BETWEEN CK AND CV CHONDRITES: A SINGLE PARENT BODY SOURCE? , 2004 .

[70]  Yasuhiro Shibata Opaque minerals in Antarctic CO3 carbonaceous chondrites, Yamato-74135, -790992, -791717, -81020, -81025, -82050 and Allan Hills 77307 , 1996 .

[71]  K. Nishiizumi,et al.  Cosmic‐ray exposure history of two Frontier Mountain H‐chondrite showers from spallation and neutron‐capture products , 2001 .

[72]  E. E. Larson,et al.  MAGNETISM OF METEORITES: A REVIEW OF RUSSIAN STUDIES , 1972 .

[73]  D. Sears,et al.  The classification and complex thermal history of the enstatite chondrites , 1995 .

[74]  D. Collinson,et al.  The implications of the magnetism of ordinary chondrite meteorites , 1992 .

[75]  E. E. Larson,et al.  Thermomagnetic analysis of meteorites, 3. C3 and C4 chondrites , 1976 .

[76]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[77]  Ming Chen,et al.  Metal-troilite-magnetite assemblage in shock veins of Sixiangkou meteorite , 2002 .

[78]  L. Néel,et al.  Magnetic Properties of an Iron—Nickel Single Crystal Ordered by Neutron Bombardment , 1964 .

[79]  A. Rubin,et al.  Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .

[80]  A. Rubin Mineralogy of meteorite groups: An update , 1997 .

[81]  R. Clayton,et al.  Origin of dark clasts in the Acfer 059/El Djouf 001 CR2 chondrite , 1994 .

[82]  C. Russell,et al.  Hybrid simulations of solar wind interaction with magnetized asteroids: Comparison with Galileo observations near Gaspra and Ida , 2003 .

[83]  P. Rochette,et al.  A magnetic susceptibility database for stony meteorites , 2001 .

[84]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[85]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .