Estimating Frequency, Amplitude and Phase of Two Sinusoids with Very Close Frequencies

This paper presents an algorithm to estimate the parameters of two closely spaced sinusoids, providing a frequency resolution that is more than 800 times greater than that obtained by using the Discrete Fourier Transform (DFT). The strategy uses a highly optimized grid search approach to accurately estimate frequency, amplitude and phase of both sinusoids, keeping at the same time the computational effort at reasonable levels. The proposed method has three main characteristics: 1) a high frequency resolution; 2) frequency, amplitude and phase are all estimated at once using one single package; 3) it does not rely on any statistical assumption or constraint. Potential applications to this strategy include the difficult task of resolving coincident partials of instruments in musical signals. Keywords—Closely spaced sinusoids, high-resolution parameter estimation, optimized grid search.

[1]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[2]  P. Depalle,et al.  Extraction of spectral peak parameters using a short-time Fourier transform modeling and no sidelobe windows , 1997, Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and Acoustics.

[3]  Jeng-Kuang Hwang,et al.  Superresolution frequency estimation by alternating notch periodogram , 1993, IEEE Trans. Signal Process..

[4]  P. Stoica,et al.  Maximum Likelhood Methods for Direction-of- Arrival Estimation , 1990 .

[5]  R. R. Boorstyn,et al.  Multiple tone parameter estimation from discrete-time observations , 1976, The Bell System Technical Journal.

[6]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[7]  Adly T. Fam,et al.  The interlaced chirp Z transform , 2004, 2004 International Conference on Signal Processing and Communications, 2004. SPCOM '04..

[8]  Shotaro Nishimura Adaptive detection and enhancement of closely spaced sinusoids using multirate techniques , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  J. A. Cadzow Multiple source location: The signal subspace approach , 1989, Twenty-Third Asilomar Conference on Signals, Systems and Computers, 1989..

[10]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[11]  Björn E. Ottersten,et al.  Detection and estimation in sensor arrays using weighted subspace fitting , 1991, IEEE Trans. Signal Process..

[12]  Björn E. Ottersten,et al.  Sensor array processing based on subspace fitting , 1991, IEEE Trans. Signal Process..

[13]  Christian J. Van Den Branden Lambrecht,et al.  Wavelet packets-based high-resolution spectral estimation , 1995, Signal Process..

[14]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[15]  A. Spanias,et al.  An adaptive modified covariance algorithm for spectral analysis , 1996, Proceedings of 8th Workshop on Statistical Signal and Array Processing.

[16]  Andreas Jakobsson,et al.  Joint High-Resolution Fundamental Frequency and Order Estimation , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[17]  Ralph Otto Schmidt,et al.  A signal subspace approach to multiple emitter location and spectral estimation , 1981 .

[18]  Malcolm D. Macleod Joint detection and high resolution ML estimation of multiple sinusoids in noise , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[19]  P. Stoica,et al.  Novel eigenanalysis method for direction estimation , 1990 .

[20]  P. O'Shea,et al.  A High Resolution Spectral Analysis Algorithm for Power System Disturbance Monitoring , 2002, IEEE Power Engineering Review.

[21]  Olivier Besson,et al.  Analysis of MUSIC and ESPRIT frequency estimates for sinusoidal signals with lowpass envelopes , 1996, IEEE Trans. Signal Process..

[22]  Hong Wang,et al.  On the performance of signal-subspace processing- Part I: Narrow-band systems , 1986, IEEE Trans. Acoust. Speech Signal Process..

[23]  B. Porat,et al.  Digital Spectral Analysis with Applications. , 1988 .

[24]  Stephen W. Hainsworth,et al.  ON SINUSOIDAL PARAMETER ESTIMATION , 2003 .

[25]  Torsten Söderström,et al.  Statistical analysis of MUSIC and ESPRIT estimates of sinusoidal frequencies , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[26]  German S. Feyh,et al.  Inverse eigenvalue problem for sinusoidal frequency estimation , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Jian Li,et al.  Amplitude estimation of sinusoidal signals: survey, new results, and an application , 2000, IEEE Trans. Signal Process..

[28]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[30]  Tero Tolonen Methods for Separation of Harmonic Sound Sources Using Sinusoidal Modeling , 1999 .

[31]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[32]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[33]  D. Mitchell Wilkes,et al.  The effects of phase on high-resolution frequency estimators , 1993, IEEE Trans. Signal Process..

[34]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[35]  J. Cadzow Maximum Entropy Spectral Analysis , 2006 .

[36]  Petre Stoica,et al.  Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements , 1989, IEEE Trans. Acoust. Speech Signal Process..

[37]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[38]  Petre Stoica,et al.  Nonlinear Least-Squares Approach to Frequency Estimation and Detection for Sinusoidal Signals with Arbitrary Envelope , 1999, Digit. Signal Process..

[39]  Rémi Gribonval,et al.  Audio source separation with a single sensor , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[40]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[41]  Petar M. Djuric,et al.  A novel approach to detection of closely spaced sinusoids , 1996, Signal Process..

[42]  Petre Stoica,et al.  Approximate maximum likelihood frequency estimation , 1994, Autom..

[43]  Petre Stoica,et al.  Introduction to spectral analysis , 1997 .