An evolution strategy-based multiple kernels multi-criteria programming approach: The case of credit decision making

Credit risk analysis has long attracted a great deal of attention from both academic researchers and practitioners. However, because of the recent financial crisis, this field continues to draw ever increasingly attention. A multiple kernels multi-criteria programming approach based on evolution strategy (ES-MK-MCP) is proposed for credit decision making in this study. We introduce a linear combination of kernel functions to enhance the interpretability of credit classification models, and propose an alternative to optimize the parameters based on the evolution strategy. For illustration purpose, two UCI credit card data sets are used to verify the effectiveness and feasibility of the proposed model. As the experimental results reveal, the proposed ES-MK-MCP model is an efficient tool for credit risk analysis, especially for decision makers to identify the most relevant features.

[1]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[2]  Yi Peng,et al.  Discovering Credit Cardholders’ Behavior by Multiple Criteria Linear Programming , 2005, Ann. Oper. Res..

[3]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[4]  Charles A. Micchelli,et al.  Learning the Kernel Function via Regularization , 2005, J. Mach. Learn. Res..

[5]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[6]  Jie Yang,et al.  Optimizing the hyper-parameters for SVM by combining evolution strategies with a grid search , 2006 .

[7]  Zhengxin Chen,et al.  A Descriptive Framework for the Field of Data Mining and Knowledge Discovery , 2008, Int. J. Inf. Technol. Decis. Mak..

[8]  Bart Baesens,et al.  Comprehensible Credit Scoring Models Using Rule Extraction from Support Vector Machines , 2007, Eur. J. Oper. Res..

[9]  Kin Keung Lai,et al.  Credit risk assessment with a multistage neural network ensemble learning approach , 2008, Expert Syst. Appl..

[10]  Yi Peng,et al.  Data Mining via Multiple Criteria Linear Programming: Applications in Credit Card Portfolio Management , 2002, Int. J. Inf. Technol. Decis. Mak..

[11]  Manolis Papadrakakis,et al.  Soft computing methodologies for structural optimization , 2003, Appl. Soft Comput..

[12]  Jianping Li,et al.  Support Vector Machines Approach to Credit Assessment , 2004, International Conference on Computational Science.

[13]  Christian Igel,et al.  Evolutionary Optimization of Sequence Kernels for Detection of Bacterial Gene Starts , 2006, ICANN.

[14]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[15]  Kin Keung Lai,et al.  Credit scoring using support vector machines with direct search for parameters selection , 2008, Soft Comput..

[17]  Yan Wang,et al.  An effective parameter extraction method based on memetic differential evolution algorithm , 2008, Microelectron. J..

[18]  Elpiniki I. Papageorgiou,et al.  A new hybrid method using evolutionary algorithms to train Fuzzy Cognitive Maps , 2005, Appl. Soft Comput..

[19]  Soushan Wu,et al.  Credit rating analysis with support vector machines and neural networks: a market comparative study , 2004, Decis. Support Syst..

[20]  Zhengxin Chen,et al.  A Multi-criteria Convex Quadratic Programming model for credit data analysis , 2008, Decis. Support Syst..

[21]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[22]  JIANPING LI,et al.  Feature Selection via Least Squares Support Feature Machine , 2007, Int. J. Inf. Technol. Decis. Mak..

[23]  Yuping Wang,et al.  An evolutionary algorithm for dynamic multi-objective optimization , 2008, Appl. Math. Comput..

[24]  Zhengxin Chen,et al.  Multiple criteria mathematical programming for multi-class classification and application in network intrusion detection , 2009, Inf. Sci..

[25]  Bernhard Schölkopf,et al.  Feature Selection for Support Vector Machines Using Genetic Algorithms , 2004, Int. J. Artif. Intell. Tools.

[26]  Kin Keung Lai,et al.  An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring , 2009, Eur. J. Oper. Res..

[27]  Hsuan-Tien Lin A Study on Sigmoid Kernels for SVM and the Training of non-PSD Kernels by SMO-type Methods , 2005 .

[28]  Elmar Kiesling,et al.  A multicriteria Decision Support System for Competence-Driven Project Portfolio Selection , 2009, Int. J. Inf. Technol. Decis. Mak..

[29]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[30]  Jasvinder S. Kandola,et al.  with Sparse Kernels , 2001 .

[31]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[32]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[33]  Yong Shi,et al.  Several multi-criteria programming methods for classification , 2009, Comput. Oper. Res..

[34]  Arijit Laha Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring , 2007, Adv. Eng. Informatics.

[35]  Zhengxin Chen,et al.  Classifying Credit Card Accounts for Business Intelligence and Decision Making: a Multiple-criteria Quadratic Programming Approach , 2005, Int. J. Inf. Technol. Decis. Mak..

[36]  Hussein A. Abdou,et al.  Neural nets versus conventional techniques in credit scoring in Egyptian banking , 2008, Expert Syst. Appl..

[37]  Yingxu Yang,et al.  Adaptive credit scoring with kernel learning methods , 2007, Eur. J. Oper. Res..

[38]  Andrea Roli,et al.  A neural network approach for credit risk evaluation , 2008 .

[39]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[40]  Gwo-Hshiung Tzeng,et al.  A VIKOR-Based Multiple Criteria Decision Method for Improving Information Security Risk , 2009, Int. J. Inf. Technol. Decis. Mak..

[41]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.