Lyapunov optimizing measures and periodic measures for $C^2$ expanding maps

We prove that there exists an open and dense subset $\mathcal{U}$ in the space of $C^{2}$ expanding self-maps of the circle $\mathbb{T}$ such that the Lyapunov minimizing measures of any $T\in{\mathcal U}$ are uniquely supported on a periodic orbit.This answers a conjecture of Jenkinson-Morris in the $C^2$ topology.

[1]  Ergodic Optimization for Hyperbolic Flows and Lorenz Attractors , 2019, 1905.02913.

[2]  Lai-Sang Young,et al.  Ergodic Theory of Differentiable Dynamical Systems , 1995 .

[3]  Oliver Jenkinson,et al.  Ergodic Optimization , 2005 .

[4]  Wen Huang,et al.  Ergodic optimization theory for Axiom A flows. , 2019, 1904.10608.

[5]  Гомологические неравенства для конечных топологических цепей Маркова@@@Cohomological Inequalities for Finite Topological Markov Chains , 1999 .

[6]  Non­zero Lyapunov exponents and uniform hyperbolicity , 2003 .

[7]  A. Lopes,et al.  Ergodic optimization, zero temperature limits and the max-plus algebra , 2013, 1305.2396.

[8]  Thierry Bousch,et al.  Le poisson n'a pas d'arêtes , 2000 .

[9]  A. Lopes,et al.  Lyapunov minimizing measures for expanding maps of the circle , 2001, Ergodic Theory and Dynamical Systems.

[10]  Optimal orbits of hyperbolic systems , 1999 .

[11]  J. Bochi ERGODIC OPTIMIZATION OF BIRKHOFF AVERAGES AND LYAPUNOV EXPONENTS , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[12]  G. Contreras Ground states are generically a periodic orbit , 2013, 1307.0559.

[13]  Thierry Bousch Le lemme de Mañé-Conze-Guivarc’h pour les systèmes amphidynamiques rectifiables , 2011 .

[14]  I. Morris,et al.  Lyapunov optimizing measures for C1 expanding maps of the circle , 2008, Ergodic Theory and Dynamical Systems.

[15]  M. Urbanski,et al.  Conformal Fractals: Ergodic Theory Methods , 2010 .

[16]  O. Jenkinson,et al.  Ergodic optimization in dynamical systems , 2017, Ergodic Theory and Dynamical Systems.

[17]  Huang Wen,et al.  Ergodic optimization theory for a class of typical maps , 2019, 1904.01915.

[18]  Michael Shub,et al.  Endomorphisms of compact differentiable manifolds , 1969 .

[19]  J. Bochi,et al.  Extremal norms for fiber-bunched cocycles , 2018, Journal de l’École polytechnique — Mathématiques.