Compositional Gradients in Cu(In,Ga)Se$_{\bf 2}$ Thin Films for Solar Cells and Their Effects on Structural Defects

Cu(In,Ga)Se$_2$ (CIGSe) absorber layers used in thin-film solar cells exhibit, when grown in a multistage process, compositional gradients of Ga and In. In this study, the correlations between the Ga gradient and the microstructure are studied by means of transmission electron microscopy (TEM) imaging combined with energy-dispersive X-ray spectroscopy (EDX), allowing the determination of structural defects and elemental distributions at identical sample positions. The occurrence of linear defects (dislocations) and planar defects (stacking faults and microtwins) of CIGSe layers was studied by means of TEM images. The Ga distributions obtained from EDX elemental distribution maps and structural parameters from the literature were used to calculate the lattice parameters c and a and the gradient dc/ dx perpendicular to the substrate. We found a correlation between the magnitude of dc/dx and the occurrence of dislocations within individual large grains. From the presented results, a threshold value of the Ga gradient of 12–13at.%/μm can be estimated for the formation of misfit dislocations.

[1]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[2]  R. Scheer Towards an electronic model for CuIn1 − xGaxSe2 solar cells , 2011 .

[3]  J. Álvarez-García,et al.  Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se2 for solar cells applications: Microstructure and Ga in-depth alloying , 2010 .

[4]  R. Klenk,et al.  Depth profiling of Cu(In,Ga)Se2 thin films grown at low temperatures , 2009 .

[5]  R. Klenk,et al.  The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates , 2009 .

[6]  H. Schock,et al.  Origin of defects in CuIn1 − xGaxSe2 solar cells with varied Ga content , 2009 .

[7]  H. Schock,et al.  Impact of the Ga concentration on the microstructure of CuIn1–x Gax Se2 , 2008 .

[8]  J. Werner,et al.  Correlation of structure parameters of absorber layer with efficiency of Cu(In, Ga)Se2 solar cell , 2008 .

[9]  J. Ayers Critical layer thickness in compositionally-graded semiconductor layers with non-zero interfacial mismatch , 2008 .

[10]  Yanfa Yan Understanding of defect physics in polycrystalline photovoltaic materials , 2007, 2011 37th IEEE Photovoltaic Specialists Conference.

[11]  H. Schock,et al.  Grain-size distributions and grain boundaries of chalcopyrite-type thin films , 2007 .

[12]  M. Powalla,et al.  Characterization of the CdS / Cu(In,Ga)Se2 interface by electron beam induced currents , 2007 .

[13]  T. Wada,et al.  Electrical properties of homogeneous Cu(In,Ga)S2 films with varied gallium content , 2007 .

[14]  I. M. Robertson,et al.  Void formation and surface energies in Cu(InGa)Se2 , 2006 .

[15]  J. Sites,et al.  Band-gap grading in Cu(In,Ga)Se2 solar cells , 2005 .

[16]  L. Stolt,et al.  The effect of Ga-grading in CIGS thin film solar cells , 2005 .

[17]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[18]  A. Rockett,et al.  Microstructural and Microchemical Analysis of Chalcopyrite Cu(In,Ga)Se 2 Films , 2003 .

[19]  A. Rockett,et al.  Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells , 2003 .

[20]  J. Werner,et al.  Back surface band gap gradings in Cu(In, Ga)Se2 solar cells , 2001 .

[21]  K. Jones,et al.  Microstructural properties of Cu(In,Ga)Se2 thin films used in high-efficiency devices , 2001 .

[22]  H. Schock,et al.  Photogeneration and carrier recombination in graded gap Cu(In, Ga)Se/sub 2/ solar cells , 2000 .

[23]  P. Schwander,et al.  Rotational twins in heteroepitaxial CuInSe2 layers on Si(111) , 1997 .

[24]  A. Rockett,et al.  Gallium diffusion and diffusivity in CuInSe2 epitaxial layers , 1996 .

[25]  Rommel Noufi,et al.  Band-gap engineering in Cu(In,Ga) Se2 thin films grown from (In,Ga)2Se3 precursors , 1996 .

[26]  Su-Huai Wei,et al.  Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys , 1995 .

[27]  T. Negami,et al.  Growth defects in CuInSe_2 thin films , 1994 .

[28]  M. Kittler,et al.  Investigation of the recombination activity of misfit dislocations in Si/SiGe epilayers by cathodoluminescence imaging and the electron beam induced current technique , 1993 .

[29]  M. Kittler,et al.  Recombination Activity of Misfit Dislocations in Silicon , 1993 .

[30]  Don Monroe,et al.  Relaxed GexSi1−x structures for III–V integration with Si and high mobility two‐dimensional electron gases in Si , 1992 .

[31]  A. Rockett,et al.  A TEM study of the crystallography and defect structures of single crystal and polycrystalline copper indium diselenide , 1991 .

[32]  D. Suri,et al.  X-ray study of CuGaxIn1−xSe2 solid solutions , 1989 .

[33]  H. Leamy,et al.  Charge collection scanning electron microscopy , 1982 .

[34]  P. Petroff,et al.  Nonradiative recombination at dislocations in III–V compound semiconductors , 1980 .

[35]  J. Steeds Dislocation arrangement in copper single crystals as a function of strain , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  R. Ham The determination of dislocation densities in thin films , 1961 .

[37]  Kenji Yamamoto,et al.  Thin-film crystalline silicon solar cells , 2002 .

[38]  B. Fultz,et al.  Transmission electron microscopy and diffractometry of materials , 2001 .

[39]  D. Cahen,et al.  Free energies and enthalpies of possible gas phase and surface reactions for preparation of CuInSe2 , 1991 .

[40]  J. Hornstra Dislocations in the diamond lattice , 1958 .

[41]  A. Sommerfeld,et al.  Über den. Zusammenhang des Abschlusses der Elektronengruppen im Atom mit den chemischen Valenzzahlen , 1926 .

[42]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .