Asymptotic Analysis of Regular Sequences

In this article, q -regular sequences in the sense of Allouche and Shallit are analysed asymptotically. It is shown that the summatory function of a regular sequence can asymptotically be decomposed as a finite sum of periodic fluctuations multiplied by a scaling factor. Each of these terms corresponds to an eigenvalue of the sum of matrices of a linear representation of the sequence; only the eigenvalues of absolute value larger than the joint spectral radius of the matrices contribute terms which grow faster than the error term. The paper has a particular focus on the Fourier coefficients of the periodic fluctuations: they are expressed as residues of the corresponding Dirichlet generating function. This makes it possible to compute them in an efficient way. The asymptotic analysis deals with Mellin–Perron summations and uses two arguments to overcome convergence issues, namely Hölder regularity of the fluctuations together with a pseudo-Tauberian argument. Apart from the very general result, three examples are discussed in more detail: sequences defined as the sum of outputs written by a transducer when reading a q -ary expansion of the input; the amount of esthetic numbers in the first  N natural numbers; and the number of odd entries in the rows of Pascal’s rhombus. For these examples, very precise asymptotic formulæ are presented. In the latter two examples, prior to this analysis only rough estimates were known.

[1]  Philippe Dumas Joint spectral radius, dilation equations, and asymptotic behavior of radix-rational sequences , 2013 .

[2]  Camino Balbuena,et al.  Locating-Dominating Sets and Identifying Codes in Graphs of Girth at least 5 , 2015, Electron. J. Comb..

[3]  Jeffrey Shallit,et al.  On the Number of Unbordered Factors , 2012, LATA.

[4]  Michael Drmota,et al.  A master theorem for discrete divide and conquer recurrences , 2011, SODA '11.

[5]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[6]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[7]  Jeffrey Shallit,et al.  The ring of k-regular sequences, II , 2003, Theor. Comput. Sci..

[8]  Valérie Berthé Combinatorics , Automata and Number Theory , 2011 .

[9]  Clemens Heuberger,et al.  Esthetic Numbers and Lifting Restrictions on the Analysis of Summatory Functions of Regular Sequences , 2019, ANALCO.

[10]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[11]  Svante Janson,et al.  Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half , 2017 .

[12]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[13]  G. Hardy,et al.  An Introduction To The Theory Of Numbers Fourth Edition , 1968 .

[14]  Fredrik Johansson,et al.  Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic , 2016, IEEE Transactions on Computers.

[15]  Philippe Dumas,et al.  Asymptotic Behaviour of a Non-commutative Rational Series with a Nonnegative Linear Representation , 2007, Discret. Math. Theor. Comput. Sci..

[16]  Helmut Prodinger,et al.  Counting optimal joint digit expansions. , 2005 .

[17]  Clemens Heuberger,et al.  On the Number of Optimal Base 2 Representations of Integers , 2006, Des. Codes Cryptogr..

[18]  Philippe Dumas,et al.  Asymptotic expansions for linear homogeneous divide-and-conquer recurrences: Algebraic and analytic approaches collated , 2014, Theor. Comput. Sci..

[19]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[20]  Brigitte Vallée,et al.  Probabilistic analyses of the plain multiple gcd algorithm , 2016, J. Symb. Comput..

[21]  A. Cicone A note on the Joint Spectral Radius , 2015, 1502.01506.

[22]  Rapha L. Jungers The Joint Spectral Radius , 2009 .

[23]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[24]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[25]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[26]  G. Hardy,et al.  The General Theory Of Dirichlets Series , .

[27]  Helmut Prodinger,et al.  Output Sum of Transducers: Limiting Distribution and Periodic Fluctuation , 2015, Electron. J. Comb..

[28]  Sur la fonction sommatoire de la fonction de von Mangoldt généralisée , 2008 .

[29]  Jeffrey Shallit,et al.  The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..

[30]  John L. Goldwasser,et al.  The density of ones in Pascal's rhombus , 1999, Discret. Math..

[31]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[32]  Helmut Prodinger,et al.  Analysis of Summatory Functions of Regular Sequences: Transducer and Pascal's Rhombus , 2018, AofA.

[33]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[34]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[35]  Hsien-Kuei Hwang,et al.  Digital Sums and Divide-and-Conquer Recurrences: Fourier Expansions and Absolute Convergence , 2005 .

[36]  M. Drmota,et al.  Combinatorics, Automata and Number Theory: Analysis of digital functions and applications , 2010 .

[37]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[38]  Helmut Prodinger,et al.  Mellin Transforms and Asymptotics: Digital Sums , 1994, Theor. Comput. Sci..

[39]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[40]  de Ng Dick Bruijn,et al.  THE AVERAGE HEIGHT OF PLANTED PLANE TREES , 1972 .

[41]  M. Fekete Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .

[42]  Jean-Paul Allouche,et al.  Automatic Dirichlet Series , 2000 .