Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream

Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this ‘number sense’, or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or an orthogonal dimension (average item size) of visual dot arrays. Along the dorsal visual stream, numerosity explained a significant amount of variance in activation patterns, above and beyond non-numerical dimensions. Its representation was selectively amplified and progressively enhanced across the hierarchy when task relevant. Our results reveal a sensory extraction mechanism yielding information on numerosity separable from other dimensions already at early visual stages and suggest that later regions along the dorsal stream are most important for explicit manipulation of numerical quantity.

[1]  Hee Yeon Im,et al.  The effects of sampling and internal noise on the representation of ensemble average size , 2012, Attention, Perception, & Psychophysics.

[2]  Daniel Ansari,et al.  Probing the nature of deficits in the 'Approximate Number System' in children with persistent Developmental Dyscalculia. , 2016, Developmental science.

[3]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[4]  Michele Fornaciai,et al.  Early Numerosity Encoding in Visual Cortex Is Not Sufficient for the Representation of Numerical Magnitude , 2018, Journal of Cognitive Neuroscience.

[5]  Elizabeth M. Brannon,et al.  Modeling the approximate number system to quantify the contribution of visual stimulus features , 2015, Cognition.

[6]  Bertrand Thirion,et al.  Deciphering Cortical Number Coding from Human Brain Activity Patterns , 2009, Current Biology.

[7]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[8]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[9]  Justin Halberda,et al.  Individual differences in non-verbal number acuity correlate with maths achievement , 2008, Nature.

[10]  Guido Marco Cicchini,et al.  Spontaneous perception of numerosity in humans , 2016, Nature Communications.

[11]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[12]  F. Kingdom,et al.  A common visual metric for approximate number and density , 2011, Proceedings of the National Academy of Sciences.

[13]  Janneke F. M. Jehee,et al.  Attention Improves Encoding of Task-Relevant Features in the Human Visual Cortex , 2011, The Journal of Neuroscience.

[14]  F. Tong,et al.  Decoding Seen and Attended Motion Directions from Activity in the Human Visual Cortex , 2006, Current Biology.

[15]  Andrea Facoetti,et al.  Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia , 2010, Cognition.

[16]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[17]  A. Nieder The neuronal code for number , 2016, Nature Reviews Neuroscience.

[18]  Andreas Nieder,et al.  A parieto-frontal network for visual numerical information in the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Z Kourtzi,et al.  fMRI Adaptation: A Technique for Studying Visual Representations in the Primate Brain , 2005 .

[20]  Daniel Ansari,et al.  How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior , 2013, Trends in Neuroscience and Education.

[21]  Margot J. Taylor,et al.  Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations , 2011, NeuroImage.

[22]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[23]  Stanislas Dehaene,et al.  Development of Elementary Numerical Abilities: A Neuronal Model , 1993, Journal of Cognitive Neuroscience.

[24]  Stanislas Dehaene,et al.  Distinct Cerebral Pathways for Object Identity and Number in Human Infants , 2008, PLoS biology.

[25]  J. Bulthé,et al.  Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses , 2014, NeuroImage.

[26]  M. Carrasco Visual attention: The past 25 years , 2011, Vision Research.

[27]  Bert De Smedt,et al.  Visual Number Beats Abstract Numerical Magnitude: Format-dependent Representation of Arabic Digits and Dot Patterns in Human Parietal Cortex , 2015, Journal of Cognitive Neuroscience.

[28]  James V. Haxby,et al.  CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave , 2016, bioRxiv.

[29]  Serge O. Dumoulin,et al.  Can responses to basic non-numerical visual features explain neural numerosity responses? , 2017, NeuroImage.

[30]  Guy A. Orban,et al.  Comparing Parietal Quantity-Processing Mechanisms between Humans and Macaques , 2017, Trends in Cognitive Sciences.

[31]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[32]  S. Dumoulin,et al.  Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex , 2015, Proceedings of the National Academy of Sciences.

[33]  Joonkoo Park,et al.  Rapid and Direct Encoding of Numerosity in the Visual Stream. , 2015, Cerebral cortex.

[34]  Justin Halberda,et al.  Developmental change in the acuity of the "Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. , 2008, Developmental psychology.

[35]  David J. Freedman,et al.  Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex , 2002, Science.

[36]  Curren Katz,et al.  Dissociating estimation from comparison and response eliminates parietal involvement in sequential numerosity perception , 2015, NeuroImage.

[37]  Jonathan S. Cant,et al.  Object Ensemble Processing in Human Anterior-Medial Ventral Visual Cortex , 2012, The Journal of Neuroscience.

[38]  Elizabeth M. Brannon,et al.  Numerical encoding in early visual cortex , 2019, Cortex.

[39]  Guido Marco Cicchini,et al.  Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects. , 2015, Journal of vision.

[40]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[41]  Marco Zorzi,et al.  Emergence of a 'visual number sense' in hierarchical generative models , 2012, Nature Neuroscience.

[42]  Wim Fias,et al.  Representation of Number in Animals and Humans: A Neural Model , 2004, Journal of Cognitive Neuroscience.

[43]  Stanislas Dehaene,et al.  Discriminability of numerosity-evoked fMRI activity patterns in human intra-parietal cortex reflects behavioral numerical acuity , 2017, Cortex.

[44]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[45]  David C. Burr,et al.  Effects of adaptation on numerosity decoding in the human brain , 2016, NeuroImage.

[46]  Manuela Piazza,et al.  Neurocognitive start-up tools for symbolic number representations , 2010, Trends in Cognitive Sciences.

[47]  S. Dehaene,et al.  Asymmetrical interference between number and item size perception provides evidence for a domain specific impairment in dyscalculia , 2018, bioRxiv.

[48]  Tali Leibovich,et al.  Asymmetric Processing of Numerical and Nonnumerical Magnitudes in the Brain: An fMRI Study , 2016, Journal of Cognitive Neuroscience.

[49]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[50]  N. Kriegeskorte,et al.  Author ' s personal copy Representational geometry : integrating cognition , computation , and the brain , 2013 .

[51]  Michele Fornaciai,et al.  Distinct Neural Signatures for Very Small and Very Large Numerosities , 2017, Front. Hum. Neurosci..

[52]  S Dehaene,et al.  Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex. , 2015, Cerebral cortex.

[53]  David J. Freedman,et al.  Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex , 2014, Neuron.

[54]  Tali Leibovich,et al.  Numerosity processing is context driven even in the subitizing range: An fMRI study , 2015, Neuropsychologia.

[55]  Steven C. Dakin,et al.  A texture-processing model of the ‘visual sense of number’ , 2014, Proceedings of the Royal Society B: Biological Sciences.

[56]  Qixuan Chen,et al.  Association between individual differences in non-symbolic number acuity and math performance: a meta-analysis. , 2014, Acta psychologica.

[57]  Panagiotis Sapountzis,et al.  Distinct roles of prefrontal and parietal areas in the encoding of attentional priority , 2018, Proceedings of the National Academy of Sciences.

[58]  Philippe Pinel,et al.  Distributed and Overlapping Cerebral Representations of Number, Size, and Luminance during Comparative Judgments , 2004, Neuron.

[59]  J. Gottlieb From Thought to Action: The Parietal Cortex as a Bridge between Perception, Action, and Cognition , 2007, Neuron.

[60]  P. Viswanathan,et al.  Differential Impact of Behavioral Relevance on Quantity Coding in Primate Frontal and Parietal Neurons , 2015, Current Biology.

[61]  Elisa Castaldi,et al.  Numerosity but not texture-density discrimination correlates with math ability in children. , 2016, Developmental psychology.

[62]  Alexandre Vignaud,et al.  Mapping numerical perception and operations in relation to functional and anatomical landmarks of human parietal cortex , 2019, bioRxiv.

[63]  Justin L. Gardner,et al.  Feature-Specific Attentional Priority Signals in Human Cortex , 2011, The Journal of Neuroscience.

[64]  D. Burr,et al.  A Visual Sense of Number , 2007, Current Biology.

[65]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[66]  Ryan E. B. Mruczek,et al.  A brief comparative review of primate posterior parietal cortex: A novel hypothesis on the human toolmaker , 2017, Neuropsychologia.

[67]  J. Gallant,et al.  Attention to Stimulus Features Shifts Spectral Tuning of V4 Neurons during Natural Vision , 2008, Neuron.

[68]  Amy Devine,et al.  Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment☆ , 2013, Cortex.

[69]  Jacqueline Leybaert,et al.  Does math education modify the approximate number system? A comparison of schooled and unschooled adults , 2013, Trends in Neuroscience and Education.

[70]  E. Eger,et al.  Neuronal foundations of human numerical representations. , 2016, Progress in brain research.

[71]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[72]  Elizabeth S Spelke,et al.  Neural signatures of number processing in human infants: evidence for two core systems underlying numerical cognition. , 2011, Developmental science.

[73]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[74]  Elizabeth M. Brannon,et al.  Numerosity processing in early visual cortex , 2017, NeuroImage.

[75]  Lawrence L. Wald,et al.  Design considerations and coil comparisons for 7 T brain imaging , 2005 .

[76]  D. Burr,et al.  Vision senses number directly. , 2009, Journal of vision.

[77]  David J. Freedman,et al.  Distinct Encoding of Spatial and Nonspatial Visual Information in Parietal Cortex , 2009, The Journal of Neuroscience.

[78]  Jessica F Cantlon,et al.  Math, monkeys, and the developing brain , 2012, Proceedings of the National Academy of Sciences.

[79]  David C. Burr,et al.  Linear mapping of numbers onto space requires attention , 2012, Cognition.

[80]  A. Henik,et al.  The contribution of fish studies to the “number sense” debate , 2016, Behavioral and Brain Sciences.

[81]  Ariel Starr,et al.  The contributions of numerical acuity and non-numerical stimulus features to the development of the number sense and symbolic math achievement , 2017, Cognition.

[82]  Michael S. Pratte,et al.  Decoding patterns of human brain activity. , 2012, Annual review of psychology.

[83]  Gavin R. Price,et al.  Dyscalculia and Typical Math Achievement Are Associated With Individual Differences in Number-Specific Executive Function. , 2018, Child development.

[84]  W. Gevers,et al.  Topographic representation of high-level cognition: numerosity or sensory processing? , 2014, Trends in Cognitive Sciences.

[85]  W. Fias Neurocognitive Components of Mathematical Skills and Dyscalculia , 2016 .

[86]  Valérie Dormal,et al.  Common and Specific Contributions of the Intraparietal Sulci to Numerosity and Length Processing , 2009, NeuroImage.

[87]  Elisa Castaldi,et al.  Perceiving numerosity from birth , 2017, Behavioral and Brain Sciences.

[88]  John H. R. Maunsell,et al.  Attention to both space and feature modulates neuronal responses in macaque area V4. , 2000, Journal of neurophysiology.

[89]  Manuela Piazza,et al.  Processing number and length in the parietal cortex: Sharing resources, not a common code , 2019, Cortex.

[90]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[91]  D. Ansari,et al.  Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis , 2017, Neuropsychologia.

[92]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[93]  E. Brannon,et al.  Monotonic Coding of Numerosity in Macaque Lateral Intraparietal Area , 2007, PLoS biology.

[94]  V. Menon,et al.  Development of Mathematical Reasoning , 2018 .

[95]  Bert Reynvoet,et al.  The interplay between nonsymbolic number and its continuous visual properties. , 2012, Journal of experimental psychology. General.

[96]  Seda Cavdaroglu,et al.  Evidence for a Posterior Parietal Cortex Contribution to Spatial but not Temporal Numerosity Perception. , 2018, Cerebral cortex.

[97]  Stefano Panzeri,et al.  Learning to focus on number , 2018, Cognition.

[98]  Melissa E. Libertus,et al.  Preschool acuity of the approximate number system correlates with school math ability. , 2011, Developmental science.

[99]  Justin Halberda,et al.  Is Approximate Number Precision a Stable Predictor of Math Ability? , 2013, Learning and individual differences.

[100]  Robert W. Kentridge,et al.  Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia. , 2010, Cerebral cortex.

[101]  Guido Marco Cicchini,et al.  Number As a Primary Perceptual Attribute: A Review , 2016, Perception.

[102]  David C. Burr,et al.  Separate Mechanisms for Perception of Numerosity and Density , 2014, Psychological science.

[103]  Felix A. Wichmann,et al.  Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data , 2016, Vision Research.

[104]  D. Burr,et al.  A shared numerical representation for action and perception , 2016, eLife.

[105]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[106]  Pierre Pica,et al.  Education Enhances the Acuity of the Nonverbal Approximate Number System , 2013, Psychological science.

[107]  G. Boynton,et al.  Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation , 2007, Neuron.

[108]  Manuela Piazza,et al.  Neural foundations and functional specificity of number representations , 2016, Neuropsychologia.

[109]  Edward Awh,et al.  Feature-Selective Attentional Modulations in Human Frontoparietal Cortex , 2016, The Journal of Neuroscience.

[110]  D. C. Burr,et al.  Adaptation to number operates on perceived rather than physical numerosity , 2016, Cognition.

[111]  Roberto Arrighi,et al.  Spatial but Not Temporal Numerosity Thresholds Correlate With Formal Math Skills in Children , 2017, Developmental psychology.