An automatic observation-based aerosol typing method for EARLINET

Abstract. We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with literature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59 % (minimum) and 90 % (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80 %. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite.

[1]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[2]  E. Smith Methods of Multivariate Analysis , 1997 .

[3]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[4]  J. Biele,et al.  Polarization Lidar: Correction of instrumental effects. , 2000, Optics express.

[5]  A. Ansmann,et al.  European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast , 2001 .

[6]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[7]  C. Zerefos,et al.  Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode , 2003 .

[8]  V. Freudenthaler,et al.  Long-range transport of Saharan dust to northern Europe : The 11-16 October 2001 outbreak observed with EARLINET , 2003 .

[9]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[10]  L. Mona,et al.  Raman lidar observations of aerosol emitted during the 2002 Etna eruption , 2004 .

[11]  A. Ansmann,et al.  Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer , 2004 .

[12]  A. Stohl,et al.  Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003 : Microphysical particle characterization , 2005 .

[13]  A. Stohl,et al.  Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2 , 2005 .

[14]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[15]  L. Mona,et al.  Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements , 2006 .

[16]  C. O'Dowd,et al.  Marine aerosol production: a review of the current knowledge , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  A. Ansmann,et al.  Multiwavelength Raman lidar observations of particle growth during long‐range transport of forest‐fire smoke in the free troposphere , 2007 .

[18]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[19]  L. Mona,et al.  Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .

[20]  A. Stohl,et al.  Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements , 2008 .

[21]  D. Winker,et al.  A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements , 2008 .

[22]  A. Stohl,et al.  Volcanic dust characterization by EARLINET during Etna's eruptions in 2001–2002 , 2008 .

[23]  L. Alados-Arboledas,et al.  Multi-spectral Lidar characterization of the vertical structure of Saharan dust aerosol over southern Spain , 2008 .

[24]  C. Zerefos,et al.  Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece , 2009 .

[25]  F. Olmo,et al.  Extreme Saharan dust event over the southern Iberian Peninsula in september 2007: active and passive remote sensing from surface and satellite , 2009 .

[26]  R. Engelmann,et al.  Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest , 2009 .

[27]  E. Giannakaki,et al.  EARLINET observations of the 14–22-May long-range dust transport event during SAMUM 2006: validation of results from dust transport modelling , 2009 .

[28]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[29]  P. D. Girolamo,et al.  APPLICATION OF RANDOMLY ORIENTED SPHEROIDS FORRETRIEVAL OF DUST PARTICLE PARAMETERS FROM MULTIWAVELENGTH LIDAR MEASUREMENTS , 2010 .

[30]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[31]  D. Balis,et al.  Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece , 2009 .

[32]  L. Mona,et al.  One year of CNR-IMAA multi-wavelength Raman lidar measurements in coincidence with CALIPSO overpasses: Level 1 products comparison , 2009 .

[33]  V. Freudenthaler,et al.  The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany , 2010 .

[34]  V. Cachorro,et al.  Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula , 2010 .

[35]  A. Ansmann,et al.  Volcanic aerosol layers observed with multiwavelength Raman lidar over central Europe in 2008–2009 , 2010 .

[36]  F. Bréon,et al.  Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission , 2011 .

[37]  V. Freudenthaler,et al.  The May/June 2008 Saharan dust event over Munich: Intensive aerosol parameters from lidar measurements , 2011 .

[38]  J. Guerrero-Rascado,et al.  Multi‐instrumental observation of an exceptionally strong Saharan dust outbreak over Portugal , 2011 .

[39]  V. Freudenthaler,et al.  Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2 , 2011 .

[40]  L. Mona,et al.  Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy , 2011 .

[41]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[42]  L. Alados-Arboledas,et al.  Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star‐and sun‐photometry , 2011 .

[43]  V. Freudenthaler,et al.  Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements , 2011 .

[44]  L. Alados-Arboledas,et al.  Monitoring of the Eyjafjallajökull volcanic aerosol plume over the Iberian Peninsula by means of four EARLINET lidar stations , 2011 .

[45]  B. Weinzierl,et al.  Aerosol classification by airborne high spectral resolution lidar observations , 2012 .

[46]  L. Alados-Arboledas,et al.  Classification of aerosol radiative properties during African desert dust intrusions over southeastern Spain by sector origins and cluster analysis , 2012 .

[47]  Charles A. Trepte,et al.  Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust , 2012 .

[48]  A. Stohl,et al.  Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010 , 2012 .

[49]  R. Engelmann,et al.  Aerosol profiling with lidar in the Amazon Basin during the wet and dry season , 2012 .

[50]  L. Mona,et al.  Lidar Measurements for Desert Dust Characterization: An Overview , 2012 .

[51]  L. Mona,et al.  Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere , 2012 .

[52]  Ming Zhao,et al.  Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products , 2012 .

[53]  Michael A. P. McAuliffe,et al.  Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET , 2012 .

[54]  A. Comerón,et al.  Intense dust and extremely fresh biomass burning outbreak in Barcelona, Spain: characterization of their optical properties and estimation of their direct radiative forcing , 2012 .

[55]  V. Freudenthaler,et al.  Characterization of the Eyjafjallajökull ash-plume: Potential of lidar remote sensing , 2012 .

[56]  L. Alados-Arboledas,et al.  Statistical analysis of aerosol optical properties retrieved by Raman lidar over Southeastern Spain , 2013 .

[57]  A. Omar,et al.  Comparison of aerosol optical depth between CALIOP and MODIS‐Aqua for CALIOP aerosol subtypes over the ocean , 2013 .

[58]  L. Alados-Arboledas,et al.  Eruption of the Eyjafjallajökull Volcano in spring 2010: Multiwavelength Raman lidar measurements of sulphate particles in the lower troposphere , 2013 .

[59]  M. Vaughan,et al.  Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data , 2013 .

[60]  A. Stohl,et al.  Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajokull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements , 2013 .

[61]  A. M. Silva,et al.  Two years of free‐tropospheric aerosol layers observed over Portugal by lidar , 2013 .

[62]  A. Ansmann,et al.  Ground‐based validation of CALIPSO observations of dust and smoke in the Cape Verde region , 2013 .

[63]  A. Ansmann,et al.  Low Arabian dust extinction‐to‐backscatter ratio , 2013 .

[64]  D. Müller,et al.  Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry , 2013 .

[65]  M. Vaughan,et al.  Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask , 2013 .

[66]  Yang Zhang,et al.  Online coupled regional meteorology chemistry models in Europe: current status and prospects , 2013 .

[67]  G. Pappalardo,et al.  Ceilometer aerosol profiling versus Raman lidar in the frame of the INTERACT campaign of ACTRIS , 2014 .

[68]  N. Mahowald,et al.  The size distribution of desert dust aerosols and its impact on the Earth system , 2014 .

[69]  L. Alados-Arboledas,et al.  Aerosol transport over the western Mediterranean basin: Evidence of the contribution of fine particles to desert dust plumes over Alborán Island , 2014 .

[70]  D. Winker,et al.  Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data , 2014 .

[71]  D. Nicolae,et al.  Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. , 2014, The Science of the total environment.

[72]  L. Mona,et al.  EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy , 2014 .

[73]  V. Freudenthaler,et al.  EARLINET: towards an advanced sustainable European aerosol lidar network , 2014 .

[74]  W. Thomas,et al.  What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET , 2014 .

[75]  Matthew S. Johnson,et al.  A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry , 2014 .

[76]  A. M. Silva,et al.  Forest Fire Smoke Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and Microphysical Properties , 2014, TheScientificWorldJournal.

[77]  K. Dawson,et al.  Spaceborne observations of the lidar ratio of marine aerosols , 2015 .

[78]  V. Freudenthaler,et al.  Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET , 2015 .

[79]  U. Wandinger,et al.  Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign , 2015 .

[80]  A. Amodeo,et al.  Effective resolution concepts for lidar observations , 2015 .

[81]  A. Schwarz Aerosol typing over Europe and its benefits for the CALIPSO and EarthCARE missions , 2015 .

[82]  A. Ansmann,et al.  Middle East versus Saharan dust extinction-to-backscatter ratios , 2015 .

[83]  Diofantos G. Hadjimitsis,et al.  EARLINET: potential operationality of a research network , 2015 .

[84]  L. Alados-Arboledas,et al.  Study of mineral dust entrainment in the planetary boundary layer by lidar depolarisation technique , 2015 .

[85]  Ulla Wandinger,et al.  EARLINET Single Calculus Chain - overview on methodology and strategy , 2015 .

[86]  M. Komppula,et al.  Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements , 2015 .

[87]  M. Kahnert,et al.  Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar , 2015 .

[88]  L. Mona,et al.  CALIPSO climatological products: evaluation and suggestions from EARLINET , 2015 .

[89]  L. Mona,et al.  A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals , 2015 .

[90]  J. Pelon,et al.  Long range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the Western Mediterranean basin , 2015 .

[91]  D. Nicolae,et al.  Independent Retrieval of Aerosol Type From Lidar , 2016 .

[92]  L. Mona,et al.  Lidar Observations of Volcanic Particles , 2016 .

[93]  B. Holben,et al.  An AERONET-based aerosol classification using the Mahalanobis distance , 2016 .

[94]  D. Müller,et al.  TROPOSPHERIC VERTICAL PROFILES OF AEROSOL OPTICAL, MICROPHYSICAL AND CONCENTRATION PROPERTIES IN THE FRAME OF THE HYGRA-CD CAMPAIGN (ATHENS, GREECE 2014): A CASE STUDY OF LONG-RANGE TRANSPORT OF MIXED AEROSOLS , 2016 .

[95]  D. Tanré,et al.  Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to multi-wavelength lidar and sun/sky-photometer data , 2016 .

[96]  L. Alados-Arboledas,et al.  A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event , 2016 .

[97]  L. Alados-Arboledas,et al.  Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations , 2016 .

[98]  R. Engelmann,et al.  HETEAC: The Aerosol Classification Model for EarthCARE , 2016 .

[99]  V. Freudenthaler,et al.  Saharan dust contribution to the Caribbean summertime boundary layer –a lidar study during SALTRACE , 2016 .

[100]  R. Engelmann,et al.  An overview of the first decade of Polly NET : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling , 2016 .

[101]  D. Althausen,et al.  AEROSOL PROPERTIES OVER SOUTHEASTERN CHINA FROM MULTI-WAVELENGTH RAMAN AND DEPOLARIZATION LIDAR MEASUREMENTS , 2016 .

[102]  S. Carn,et al.  Atmospheric processes affecting the separation of volcanic ash and SO 2 in volcanic eruptions , 2017 .

[103]  J. Biele Polarization lidar : Corrections of instrumental effects , 2022 .