Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate

[1]  Juerg Leuthold,et al.  Reduced Equalization Needs of 100 GHz Bandwidth Plasmonic Modulators , 2019, Journal of Lightwave Technology.

[2]  A. Nakanishi,et al.  Wide-Temperature-Range (25–80 °C) 53-Gbaud PAM4 (106-Gb/s) Operation of 1.3-μm Directly Modulated DFB Lasers for 10-km Transmission , 2019, Journal of Lightwave Technology.

[3]  Nikolaos-Panteleimon Diamantopoulos,et al.  On the Complexity Reduction of the Second-Order Volterra Nonlinear Equalizer for IM/DD Systems , 2019, Journal of Lightwave Technology.

[4]  Sébastien Bigo,et al.  140/180/204-Gbaud OOK Transceiver for Inter- and Intra-Data Center Connectivity , 2019, Journal of Lightwave Technology.

[5]  W. Kobayashi,et al.  Amplifierless PAM-4/PAM-8 transmissions in O-band using a directly modulated laser for optical data-center interconnects. , 2019, Optics letters.

[6]  Takaaki Kakitsuka,et al.  Low-operating-energy directly modulated lasers for short-distance optical interconnects , 2018, Advances in Optics and Photonics.

[7]  Martin Schell,et al.  100 GBd Intensity Modulation and Direct Detection With an InP-Based Monolithic DFB Laser Mach–Zehnder Modulator , 2017, Journal of Lightwave Technology.

[8]  Geert Morthier,et al.  Direct and Electroabsorption Modulation of a III–V-on-Silicon DFB Laser at 56 Gb/s , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  E. Yamada,et al.  Over 67 GHz Bandwidth and 1.5 V Vπ InP-Based Optical IQ Modulator With n-i-p-n Heterostructure , 2017, Journal of Lightwave Technology.

[10]  M. I. Olmedo,et al.  100 GHz Externally Modulated Laser for Optical Interconnects , 2017, Journal of Lightwave Technology.

[11]  Hiroshi Yamazaki,et al.  214-Gb/s 4-PAM Operation of Flip-Chip Interconnection EADFB Laser Module , 2017, Journal of Lightwave Technology.

[12]  Yasuhiro Matsui,et al.  55 GHz Bandwidth Distributed Reflector Laser , 2017, Journal of Lightwave Technology.

[13]  Herbert Zirath,et al.  An Energy Efficient 56 Gbps PAM-4 VCSEL Transmitter Enabled by a 100 Gbps Driver in 0.25 μm InP DHBT Technology , 2016, Journal of Lightwave Technology.

[14]  Koji Yamada,et al.  Membrane distributed-reflector laser integrated with SiOx-based spot-size converter on Si substrate. , 2016, Optics express.

[15]  Yasuhiro Matsui,et al.  28-Gbaud PAM4 and 56-Gb/s NRZ Performance Comparison Using 1310-nm Al-BH DFB Laser , 2016, Journal of Lightwave Technology.

[16]  T. Tsuchizawa,et al.  Monolithic Integration of InP Wire and $\mbox{SiO}_x$ Waveguides on Si Platform , 2015, IEEE Photonics Journal.

[17]  C. Schow,et al.  A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link , 2015, IEEE Photonics Technology Letters.

[18]  Kouji Nakahara,et al.  Direct Modulation at 56 and 50 Gb/s of 1.3- $\mu $ m InGaAlAs Ridge-Shaped-BH DFB Lasers , 2015, IEEE Photonics Technology Letters.

[19]  Shigehisa Tanaka,et al.  1.3 μm InGaAlAs asymmetric corrugationpitch- modulated DFB lasers with high mask margin at 28 Gbit/s , 2014 .

[20]  Gang Wang,et al.  Temperature dependence of refractive indices for 4H- and 6H-SiC , 2014 .

[21]  Fumio Koyama,et al.  High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance , 2014 .

[22]  T. Kurosaki,et al.  50-Gb/s Direct Modulation of a 1.3-μm InGaAlAs-Based DFB Laser With a Ridge Waveguide Structure , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  M. Schell,et al.  Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL) , 2012, IEEE Photonics Technology Letters.

[24]  M. Matsuda,et al.  Uncooled 40-Gbps direct modulation of 1.3-µm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure , 2010, 22nd IEEE International Semiconductor Laser Conference.

[25]  S. Ide,et al.  1.3- $\mu$m AlGaInAs Multiple-Quantum-Well Semi-insulating Buried-Heterostructure Distributed-Feedback Lasers for High-Speed Direct Modulation , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  T. W. Berg,et al.  Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design , 2003 .

[27]  Yoh Ogawa,et al.  Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers , 1998 .

[28]  Richard Schatz,et al.  30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 /spl mu/m wavelength , 1997 .

[29]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[30]  M. Kito,et al.  Enhanced relaxation oscillation frequency of 1.3 /spl mu/m strained-layer multiquantum well lasers , 1994, IEEE Photonics Technology Letters.

[31]  M. Aoki,et al.  Dependence of high-speed properties on the number of quantum wells in 1.55 mu m InGaAs-InGaAsP MQW lambda /4-shifted DFB lasers , 1993 .

[32]  Tawee Tanbun-Ek,et al.  25 GHz bandwidth 1.55 mu m GaInAsP p-doped strained multiquantum-well lasers , 1992 .

[33]  John E. Bowers,et al.  Propagation delays and transition times in pulse-modulated semiconductor lasers , 1986 .

[34]  U. Troppenz,et al.  40 Gb / s Directly Modulated InGaAsP Passive Feedback DFB Laser , 2022 .