Effect of gate engineering in double-gate MOSFETs for analog/RF applications

This work uncovers the potential benefit of fully-depleted short-channel triple-material double-gate (TM-DG) SOI MOSFET in the context of RF and analog performance characteristics. A systematic, quantitative investigation of the analog and RF performance figures-of-merits (FOMs) of TM-DG MOSFET are presented. The key idea in this paper is to demonstrate the improved RF, analog and linearity performance exhibited by TM-DG MOSFET over dual-material dual-gate (DM-DG) and conventional single-material double-gate (SM-DG) MOSFET. Using two-dimensional (2-D) device simulations, we have examined various design issues and provided the reasons for the improved performance. The effect of different length ratios of three channel regions related to three different gate materials of TM-DG structure on the RF and analog performance have also been discussed. Simulations reveal an improvement of intrinsic gain by 20.41% and 38.53%, an increase of 14.23% and 26.4% in the case of f"T, an increase of 13.9% and 23.85% in the case of f"m"a"x values for TM-DG (1:2:3) MOSFET compared to DM-DG and SM-DG MOSFET respectively. As a result, we demonstrate that TM-DG MOSFET can be a viable option to enhance the performance of SOI technology for high-frequency analog applications.

[1]  Satyabrata Jit,et al.  A two-dimensional analytical model for threshold voltage of short-channel triple-material double-gate metal-oxide-semiconductor field-effect transistors , 2010 .

[2]  Chenming Hu,et al.  Dual work function metal gate CMOS technology using metal interdiffusion , 2001, IEEE Electron Device Letters.

[3]  J. Liu,et al.  Dual-work-function metal gates by full silicidation of poly-Si with Co-Ni bi-Layers , 2005, IEEE Electron Device Letters.

[4]  Jean-Pierre Raskin,et al.  Impact of downscaling on high-frequency noise performance of bulk and SOI MOSFETs , 2004 .

[5]  M. V. Fischetti,et al.  Monte Carlo simulation of a 30 nm dual-gate MOSFET: how short can Si go? , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[6]  J. K. Efavi,et al.  Tungsten work function engineering for dual metal gate nano-CMOS , 2005 .

[7]  In Man Kang,et al.  RF Performance and Small-Signal Parameter Extraction of Junctionless Silicon Nanowire MOSFETs , 2011, IEEE Transactions on Electron Devices.

[8]  R. van Langevelde,et al.  RF-CMOS performance trends , 2001 .

[9]  M. J. Kumar,et al.  Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review , 2004, IEEE Transactions on Device and Materials Reliability.

[10]  J. Woo,et al.  Tunable work function in fully nickel-silicided polysilicon gates for metal gate MOSFET applications , 2005, IEEE Electron Device Letters.

[11]  C.K. Sarkar,et al.  Influence of Channel and Gate Engineering on the Analog and RF Performance of DG MOSFETs , 2010, IEEE Transactions on Electron Devices.

[12]  Yeong-Seuk Kim,et al.  Silicon Complementary Metal–Oxide–Semiconductor Field-Effect Transistors with Dual Work Function Gate , 2006 .

[13]  A. Orouji,et al.  Nanoscale Triple Material Double Gate (TM-DG) MOSFET for Improving Short Channel Effects , 2008, 2008 International Conference on Advances in Electronics and Micro-electronics.

[14]  F. Danneville,et al.  What are the limiting parameters of deep-submicron MOSFETs for high frequency applications? , 2003, IEEE Electron Device Letters.

[15]  Mamidala Jagadesh Kumar,et al.  Investigation of the novel attributes of a single-halo double gate SOI MOSFET: 2D simulation study , 2004, Microelectron. J..

[16]  T. Ouisse,et al.  Ultimately thin double-gate SOI MOSFETs , 2003 .

[17]  J. Fellrath,et al.  CMOS analog integrated circuits based on weak inversion operations , 1977 .

[18]  Mei-Li Chen,et al.  A New Two-Dimensional Analytical Model for Nanoscale Symmetrical Tri-Material Gate Stack Double Gate Metal–Oxide–Semiconductor Field Effect Transistors , 2009 .

[19]  Christian Enz,et al.  Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design , 2006 .

[20]  M.J. Kumar,et al.  Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs , 2004, IEEE Transactions on Electron Devices.

[21]  Chun-Chien Tsai,et al.  High-performance top and bottom double-gate low-temperature poly-silicon thin film transistors fabricated by excimer laser crystallization , 2008 .

[22]  S. Chakraborty,et al.  Subthreshold Performance of Dual-Material Gate CMOS Devices and Circuits for Ultralow Power Analog/Mixed-Signal Applications , 2008, IEEE Transactions on Electron Devices.

[23]  A. Godoy,et al.  Quantum-mechanical effects in multiple-gate MOSFETs , 2007 .

[24]  Subhasis Haldar,et al.  Physics-based analytical modeling of potential and electrical field distribution in dual material gate (DMG)-MOSFET for improved hot electron effect and carrier transport efficiency , 2002 .

[25]  O. Rozeau,et al.  Analog/RF Performance of Multichannel SOI MOSFET , 2009, IEEE Transactions on Electron Devices.

[26]  N. Balasubramanian,et al.  Three-Layer laminated metal gate electrodes with tunable work functions for CMOS applications , 2005, IEEE Electron Device Letters.

[27]  Chenming Hu,et al.  MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations , 2003 .

[28]  Te-Kuang Chiang A new two-dimensional analytical subthreshold behavior model for short-channel tri-material gate-stack SOI MOSFET's , 2009, Microelectron. Reliab..

[29]  Te-Kuang Chiang A new two-dimensional subthreshold behavior model for the short-channel asymmetrical dual-material double-gate (ADMDG) MOSFET's , 2009, Microelectron. Reliab..

[30]  B.C. Paul,et al.  Device optimization for digital subthreshold logic operation , 2005, IEEE Transactions on Electron Devices.

[31]  F. Djeffal,et al.  An optimized design of 10-nm-scale dual-material surrounded gate MOSFETs for digital circuit applications , 2011 .

[32]  Yiming Li,et al.  A Comparative Study of Electrical Characteristic on Sub-10-nm Double-Gate MOSFETs , 2005, IEEE Transactions on Nanotechnology.

[33]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[34]  M.J. Deen,et al.  An effective gate resistance model for CMOS RF and noise modeling , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[35]  Calvin Plett,et al.  Radio Frequency Integrated Circuit Design , 2003 .

[36]  Denis Flandre,et al.  SOI CMOS Transistors for RF and Microwave Applications , 2001 .

[37]  K. Goel,et al.  Modeling and simulation of a nanoscale three-region tri-material gate stack (TRIMGAS) MOSFET for improved carrier transport efficiency and reduced hot-electron effects , 2006, IEEE Transactions on Electron Devices.

[38]  J. Jomaah,et al.  Effect of Localized Interface Charge on the Threshold Voltage of Short-Channel Undoped Symmetrical Double-Gate MOSFETs , 2011, IEEE Transactions on Electron Devices.

[39]  M. Gupta,et al.  TCAD Assessment of Device Design Technologies for Enhanced Performance of Nanoscale DG MOSFET , 2011, IEEE Transactions on Electron Devices.

[40]  D. H. Brown,et al.  Design and characterization of a step-recovery switching transistor , 1968 .

[41]  J.-P. Raskin,et al.  Underlap channel UTBB MOSFETs for low—power analog/RF applications , 2009, 2009 10th International Conference on Ultimate Integration of Silicon.

[42]  M.J. Kumar,et al.  A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation , 2005, IEEE Transactions on Nanotechnology.

[43]  X. Garros,et al.  75 nm damascene metal gate and high-k integration for advanced CMOS devices , 2002, Digest. International Electron Devices Meeting,.

[44]  D. Kwong,et al.  A dual-metal gate integration process for CMOS with sub-1-nm EOT HfO/sub 2/ by using HfN replacement gate , 2004, IEEE Electron Device Letters.

[45]  Husam N. Alshareef,et al.  Integration of dual metal gate CMOS on high-k dielectrics utilizing a metal wet etch process , 2005 .

[46]  Xing Zhou,et al.  A novel hetero-material gate (HMG) MOSFET for deep-submicron ULSI technology , 1998 .

[47]  Krishna C. Saraswat,et al.  Optimization of extrinsic source/drain resistance in ultrathin body double-gate FETs , 2003 .