Enhanced Geologic Modeling with Data-Driven Training Images for Improved Resources and Recoverable Reserves

Deterministic geologic modeling methods accurately characterize large-scale continuous features of geological phenomena, but often fail in reproducing their inherent short-scale variability. The opposite is the case with stochastic methods that lack large-scale continuity yet contain reasonable short-scale variability. Both methods are limited in their ability to account for a balanced amount of geologic variability. Integrating both large and short scale geologic elements properly improves the prediction of mineral resources and reserves. This thesis develops a methodology that improves the characterization of the geologic variability in mineral deposits. The central idea is to combine deterministic and stochastic geologic interpretations and transfer the essential geological features into geostatistical models. The multiple point statistics (MPS) simulation method is suitable for this task. This technique utilizes training images for extracting and then reproducing complicated geomorphological features in the models. The method has been adapted to integrate information from different images. Generally, training images are designed based on conceptual models of the geologic phenomena; in this work, deterministic and stochastic geologic representations are used as data-driven

[1]  George Christakos,et al.  Random Field Models in Earth Sciences , 1992 .

[2]  Alexandre Boucher,et al.  A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM , 2008, Comput. Geosci..

[3]  Yuhong Liu,et al.  Using the Snesim program for multiple-point statistical simulation , 2006, Comput. Geosci..

[5]  Gregoire Mariethoz,et al.  The Direct Sampling method to perform multiple‐point geostatistical simulations , 2010 .

[6]  Amir H. Hosseini Probabilistic modeling of natural attenuation of petroleum hydrocarbons , 2009 .

[7]  A. Journel,et al.  The Necessity of a Multiple-Point Prior Model , 2007 .

[8]  A. Journel Geostatistics for Conditional Simulation of Ore Bodies , 1974 .

[9]  Andre G. Journel,et al.  Beyond Covariance: The Advent of Multiple-Point Geostatistics , 2005 .

[10]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[11]  Sebastien Strebelle,et al.  Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics , 2002 .

[12]  Clayton V. Deutsch,et al.  Hierarchical object-based stochastic modeling of fluvial reservoirs , 1996 .

[13]  Yuhong Liu,et al.  Improving Sequential Simulation with a Structured Path Guided by Information Content , 2004 .

[14]  G. Matheron,et al.  A Simple Substitute for Conditional Expectation : The Disjunctive Kriging , 1976 .

[15]  A. Journel Fundamentals of geostatistics in five lessons , 1991 .

[16]  P. Renard,et al.  Probability Aggregation Methods in Geoscience , 2012, Mathematical Geosciences.

[17]  Michael J Munroe A Methodology for Calculating Tonnage Uncertainty in Vein-Type Deposits , 2012 .

[18]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[19]  L. Hu,et al.  Multiple-Point Simulations Constrained by Continuous Auxiliary Data , 2008 .

[20]  Mike R. Leeder,et al.  A simulation model of alluvial stratigraphy , 1979 .

[21]  A. Journel Combining Knowledge from Diverse Sources: An Alternative to Traditional Data Independence Hypotheses , 2002 .

[22]  Dominique Guerillot,et al.  Conditional Simulation of the Geometry of Fluvio-Deltaic Reservoirs , 1987 .

[23]  G. Verly,et al.  The multigaussian approach and its applications to the estimation of local reserves , 1983 .

[24]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[25]  A. Lyon,et al.  Origin of the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Evidence from Regional Pb and Sr Isotope Sources , 2004 .

[26]  M. Porter Competitive Advantage: Creating and Sustaining Superior Performance , 1985 .

[27]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[28]  Jesús Carrera,et al.  Application of Multiple Point Geostatistics to Non-stationary Images , 2008 .

[29]  David Michel,et al.  Geostatistical Ore Reserve Estimation , 1977 .

[30]  C. Borror Generalized Linear Models and Extensions, Second Edition , 2008 .

[31]  Jef Caers,et al.  Geostatistical Reservoir Modelling using Statistical Pattern Recognition , 2001 .

[32]  Characterization of High Order Correlation for Enhanced Indicator Simulation , 2001 .

[33]  Robert L. Winkler,et al.  The Consensus of Subjective Probability Distributions , 1968 .

[34]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[35]  Sahyun Hong,et al.  Multivariate Analysis of Diverse Data for Improved Geostatistical Reservoir Modeling , 2010 .

[36]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[37]  Tosiyasu L. Kunii,et al.  Function Representation of Solids Reconstructed from Scattered Surface Points and Contours , 1995, Comput. Graph. Forum.

[38]  Andre G. Journel,et al.  Conditional Indicator Simulation: Application to a Saskatchewan uranium deposit , 1984 .

[39]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[40]  Alain Galli,et al.  The Pros and Cons of the Truncated Gaussian Method , 1994 .

[41]  S. Houlding Computer modelling limitations and new directions. II , 1991 .

[42]  Clayton V. Deutsch,et al.  Multiple Point Statistics with Multiple Training Images , 2012 .

[43]  P. Bézier MATHEMATICAL AND PRACTICAL POSSIBILITIES OF UNISURF , 1974 .

[44]  J. Doob Stochastic processes , 1953 .

[45]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[46]  M. Stone The Opinion Pool , 1961 .

[47]  Brandon J. Wilde,et al.  Modeling multiple coal seams using signed distance functions and global kriging , 2013 .

[48]  Clayton V. Deutsch,et al.  A sequential indicator simulation program for categorical variables with point and block data: BlockSIS , 2006, Comput. Geosci..

[49]  H. J. Ross,et al.  Practical Implicit Geological Modelling , 2003 .

[50]  Clayton V. Deutsch,et al.  Geostatistical Reservoir Modeling , 2002 .

[51]  Clayton V. Deutsch,et al.  ANNEALING TECHNIQUES APPLIED TO RESERVOIR MODELING AND THE INTEGRATION OF GEOLOGICAL AND ENGINEERING (WELL TEST) DATA , 1992 .

[52]  Clayton V. Deutsch,et al.  A multidimensional scaling approach to enforce reproduction of transition probabilities in truncated plurigaussian simulation , 2013, Stochastic Environmental Research and Risk Assessment.

[53]  Probabilistic Modeling of Ore Lens Geometry: An Alternative to Deterministic Wireframes , 2005 .

[54]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[55]  Sebastien Strebelle,et al.  Reservoir Facies Modelling: New Advances in MPS , 2005 .

[56]  J. M. Garcia,et al.  Value creation in the resource business , 2011 .

[57]  A. Journel,et al.  Entropy and spatial disorder , 1993 .

[58]  R. M. Srivastava,et al.  Multivariate Geostatistics: Beyond Bivariate Moments , 1993 .

[59]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[60]  G. Mariéthoz,et al.  An Improved Parallel Multiple-point Algorithm Using a List Approach , 2011 .

[61]  D. Moore,et al.  Geologic setting and genesis of the Red Dog zinc-lead-silver deposit, western Brooks Range, Alaska , 1986 .

[62]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[63]  Roussos Dimitrakopoulos,et al.  High-order Statistics of Spatial Random Fields: Exploring Spatial Cumulants for Modeling Complex Non-Gaussian and Non-linear Phenomena , 2009 .

[64]  Daniel M. Tetzlaff,et al.  Stationarity Scores on Training Images for Multipoint Geostatistics , 2009 .

[65]  Clayton V. Deutsch,et al.  Multiple Point Metrics to Assess Categorical Variable Models , 2010 .

[66]  K. McClay,et al.  Structure of the Red Dog District, Western Brooks Range, Alaska , 2004 .

[67]  Simulation of Categorical Variables with Multiple Point Statistics and Random Perturbations : MPS-RP , 2011 .

[68]  Alexandre Boucher,et al.  Considering complex training images with search tree partitioning , 2009, Comput. Geosci..

[69]  A. Journel Nonparametric estimation of spatial distributions , 1983 .

[70]  Clayton V. Deutsch,et al.  Stochastic surface-based modeling of turbidite lobes , 2005 .

[71]  M. E. Rossi,et al.  Estimating Recoverable Reserves: Is it Hopeless ? , 1994 .

[72]  G. Christakos A Bayesian/maximum-entropy view to the spatial estimation problem , 1990 .

[73]  Mine-scale modeling of lithologies with multiple- point geostatistical simulation , 2011 .

[74]  Jef Caers,et al.  Stochastic Reservoir Simulation Using Neural Networks Trained on Outcrop Data , 1998 .

[75]  Roussos Dimitrakopoulos,et al.  Conditional simulation algorithms for modelling orebody uncertainty in open pit optimisation , 1998 .

[76]  E. I. Polyakova,et al.  The Nu Expression for Probabilistic Data Integration , 2007 .