Decoy Effects in Financial Service E‐Sales Systems

Users of E-Sales platforms typically face the problem of choosing the most suitable product or service from large and potentially complex assortments. Whereas the problem of finding and presenting suitable items fulfilling the user’s requirements can be tackled by providing additional support in the form of recommenderand configuration systems, the control of psychological side effects resulting from irrationalities of human decision making has been widely ignored so far. Decoy effects are one family of biases which have been shown to be relevant in this context. The asymmetric dominance effect and the compromise effect have been shown to be among the most stable decoy effects and therefore also carry big potential for biasing online decision taking. This paper presents two user studies investigating the impacts of the asymmetric dominance and compromise effect in the financial services domain. While the first study uses synthesized items for triggering a decoy effect, the second study uses real products found on konsument.at, which is an Austrian consumer advisory site. Whereas the results of the first study prove the potential influence of decoy effects on online decision making in the financial services domain, the results of the second study provide clear evidence of the practical relevance for real online decision supportand E-sales systems.

[1]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[2]  T. Saaty,et al.  Why the magic number seven plus or minus two , 2003 .

[3]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[4]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[5]  Ronald Fagin,et al.  Comparing Partial Rankings , 2006, SIAM J. Discret. Math..

[6]  Yvonne Kammerer,et al.  How the interface design influences users' spontaneous trustworthiness evaluations of web search results: comparing a list and a grid interface , 2010, ETRA.

[7]  D. Kahneman Maps of Bounded Rationality: Psychology for Behavioral Economics , 2003 .

[8]  Eric J. Johnson,et al.  The adaptive decision maker , 1993 .

[9]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[10]  Ron Kohavi,et al.  Seven pitfalls to avoid when running controlled experiments on the web , 2009, KDD.

[11]  Kirsten Swearingen,et al.  Beyond Algorithms: An HCI Perspective on Recommender Systems , 2001 .

[12]  Kim Marriott,et al.  MADRID ! Track : User Interfaces and Mobile Web / Session : User Interfaces 831 , 2009 .

[13]  Ron Kohavi,et al.  Controlled experiments on the web: survey and practical guide , 2009, Data Mining and Knowledge Discovery.

[14]  J. F. Quesada,et al.  An Explanation of Decoy Effects without Assuming Numerical Attributes , 2005 .

[15]  Alexander Felfernig,et al.  Consumer decision making in knowledge-based recommendation , 2009, Journal of Intelligent Information Systems.

[16]  Mathias Bauer,et al.  The MAUT-Machine: An Adaptive Recommender System , 2002 .

[17]  Li Chen,et al.  Trust-inspiring explanation interfaces for recommender systems , 2007, Knowl. Based Syst..

[18]  Gerd Gigerenzer,et al.  Bounded Rationality : Models of Fast and Frugal Inference , 1997 .

[19]  Robin Burke,et al.  Knowledge-based recommender systems , 2000 .

[20]  Steven Callander,et al.  Context-dependent Voting , 2006 .

[21]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[22]  A. Tversky,et al.  Choice in Context: Tradeoff Contrast and Extremeness Aversion , 1992 .

[23]  Christopher P. Puto,et al.  Adding Asymmetrically Dominated Alternatives: Violations of Regularity & the Similarity Hypothesis. , 1981 .

[24]  Allan D. Shocker,et al.  Toward understanding the attraction effect: The implications of product stimulus meaningfulness and familiarity. , 1987 .

[25]  L. Schmidt-Thieme,et al.  Introduction to the IEEE Intelligent Systems Special Issue : Recommender Systems , 2007 .

[26]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[27]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[28]  Alexander Felfernig,et al.  Impacts of decoy elements on result set evaluations in knowledge-based recommendation , 2009, Int. J. Adv. Intell. Paradigms.

[29]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[30]  J. R. Quinlan Learning With Continuous Classes , 1992 .

[31]  Allen Newell,et al.  The psychology of human-computer interaction , 1983 .

[32]  M. Weiser,et al.  An empirical comparison of pie vs. linear menus , 1988, CHI '88.

[33]  J. Brian Gray,et al.  Introduction to Linear Regression Analysis , 2002, Technometrics.

[34]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[35]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[36]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[37]  Dan Ariely,et al.  Seeking Subjective Dominance in Multidimensional Space: An Explanation of the Asymmetric Dominance Effect , 1995 .

[38]  Gerhard Friedrich,et al.  Recommender Systems - An Introduction , 2010 .

[39]  David Fernández-Baca,et al.  Computing distances between partial rankings , 2009, Inf. Process. Lett..

[40]  M. Matteucci,et al.  An Evaluation Methodology for Collaborative Recommender Systems , 2008, 2008 International Conference on Automated Solutions for Cross Media Content and Multi-Channel Distribution.

[41]  Li Chen,et al.  Evaluating Critiquing-based Recommender Agents , 2006, AAAI.

[42]  Sean M. McNee,et al.  Lessons on Applying Automated Recommender Systems to Information-Seeking Tasks , 2006, AAAI.

[43]  Ian H. Witten,et al.  Induction of model trees for predicting continuous classes , 1996 .

[44]  Todd J. Thorsteinson,et al.  Anchoring effects on performance judgments , 2008 .

[45]  Li Chen,et al.  A user-centric evaluation framework for recommender systems , 2011, RecSys '11.

[46]  F. Strack,et al.  Explaining the Enigmatic Anchoring Effect: Mechanisms of Selective Accessibility , 1997 .

[47]  Paramesh Ray Independence of Irrelevant Alternatives , 1973 .

[48]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[49]  Félix Hernández-del-Olmo,et al.  Evaluation of recommender systems: A new approach , 2008, Expert Syst. Appl..

[50]  B. Schwartz The tyranny of choice. , 2004, Scientific American.

[51]  Anthony J. Hornof,et al.  A minimal model for predicting visual search in human-computer interaction , 2007, CHI.

[52]  Dietmar Jannach,et al.  Persuasive Online-Selling in Quality and Taste Domains , 2006, EC-Web.

[53]  Enrico Tronci 1997 , 1997, Les 25 ans de l’OMC: Une rétrospective en photos.

[54]  A. Rubinstein Modeling Bounded Rationality , 1998 .

[55]  F. Bolger,et al.  Asymmetric dominance and phantom decoy effects in games , 2007 .

[56]  Li Chen,et al.  Eye-Tracking Study of User Behavior in Recommender Interfaces , 2010, UMAP.

[57]  B. Wernerfelt,et al.  A Rational Reconstruction of the Compromise Effect: Using Market Data to Infer Utilities , 1995 .

[58]  Ching-Lai Hwang,et al.  Multiple attribute decision making : an introduction , 1995 .

[59]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[60]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[61]  Li Chen,et al.  Interaction design guidelines on critiquing-based recommender systems , 2009, User Modeling and User-Adapted Interaction.