Modelling implied volatility with OLS and panel data models

Abstract The paper performs an empirical estimation of time-varying volatility using OLS regression. Error Components, and Dummy Variable models, by regressing the implied volatility on time to maturity, the strike price and a dummy. Both the daily OLS equations and the panel data model provide more accurate estimates of Black and Scholes option prices than the bench-mark standard deviation of log returns. FT-SE 100 Index European options are used for empirical analysis.

[1]  F. Black Fact and Fantasy in the Use of Options , 1975 .

[2]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[3]  Cheng Hsiao,et al.  Analysis of Panel Data , 1987 .

[4]  A. Harvey Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .

[5]  D. Shanno,et al.  Option Pricing when the Variance Is Changing , 1987, Journal of Financial and Quantitative Analysis.

[6]  W. Torous,et al.  On Jumps in Common Stock Prices and Their Impact on Call Option Pricing , 1985 .

[7]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[8]  Bruce D. Fielitz,et al.  Stable Distributions and the Mixtures of Distributions Hypotheses for Common Stock Returns , 1983 .

[9]  M. J. Klass,et al.  On the Estimation of Security Price Volatilities from Historical Data , 1980 .

[10]  S. Beckers Standard deviations implied in option prices as predictors of future stock price variability , 1981 .

[11]  Richard J. Rendleman,et al.  Option Prices as Predictors of Equilibrium Stock Prices , 1982 .

[12]  Richard J. Rendleman,et al.  STANDARD DEVIATIONS OF STOCK PRICE RATIOS IMPLIED IN OPTION PRICES , 1976 .

[13]  G. Frankfurter,et al.  A Normative Approach to Pension Fund Management , 1981, Journal of Financial and Quantitative Analysis.

[14]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[15]  A. Christie,et al.  The stochastic behavior of common stock variances: value , 1982 .

[16]  Donald P. Chiras,et al.  The information content of option prices and a test of market efficiency , 1978 .

[17]  G. Schwert Why Does Stock Market Volatility Change Over Time? , 1988 .

[18]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[19]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[20]  R. Jarrow,et al.  Option Pricing and Implicit Volatilities , 1989 .

[21]  R. Trippi,et al.  COMMON STOCK VOLATILITY EXPECTATIONS IMPLIED BY OPTION PREMIA , 1978 .

[22]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[23]  G. Schwert,et al.  Heteroskedasticity in Stock Returns , 1989 .

[24]  Vasant Naik,et al.  General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns , 1990 .

[25]  K. French,et al.  Stock return variances: The arrival of information and the reaction of traders , 1986 .

[26]  Larry J. Merville,et al.  An Empirical Examination of the Black‐Scholes Call Option Pricing Model , 1979 .

[27]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[28]  K. French,et al.  Expected stock returns and volatility , 1987 .

[29]  S. Beckers,et al.  Variances of Security Price Returns Based on High , 1983 .

[30]  G. Judge,et al.  The Theory and Practice of Econometrics , 1981 .

[31]  Tom Wansbeek,et al.  Estimation of the error-components model with incomplete panels , 1989 .

[32]  R. Just,et al.  Stochastic specification of production functions and economic implications , 1978 .

[33]  Louis O. Scott Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.

[34]  M. Parkinson The Extreme Value Method for Estimating the Variance of the Rate of Return , 1980 .

[35]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[36]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[37]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[38]  J. Patell,et al.  Anticipated information releases reflected in call option prices , 1979 .

[39]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .