TPRM: A Topic-based Personalized Ranking Model for Web Search

Ranking models have achieved promising results, but it remains challenging to design personalized ranking systems to leverage user profiles and semantic representations between queries and documents. In this paper, we propose a topic-based personalized ranking model (TPRM) that integrates user topical profile with pretrained contextualized term representations to tailor the general document ranking list. Experiments on the real-world dataset demonstrate that TPRM outperforms state-of-the-art ad-hoc ranking models and personalized ranking models significantly.

[1]  Filip Radlinski,et al.  Personalizing web search using long term browsing history , 2011, WSDM '11.

[2]  Wolfgang Nejdl,et al.  Using ODP metadata to personalize search , 2005, SIGIR '05.

[3]  Zhiyuan Liu,et al.  Convolutional Neural Networks for Soft-Matching N-Grams in Ad-hoc Search , 2018, WSDM.

[4]  Jianfeng Gao,et al.  Ranking, Boosting, and Model Adaptation , 2008 .

[5]  Zhiyuan Liu,et al.  End-to-End Neural Ad-hoc Ranking with Kernel Pooling , 2017, SIGIR.

[6]  W. Bruce Croft,et al.  A Deep Look into Neural Ranking Models for Information Retrieval , 2019, Inf. Process. Manag..

[7]  Susan Gauch,et al.  Personalizing Search Based on User Search Histories , 2004 .

[8]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[9]  Ji-Rong Wen,et al.  Personalizing Search Results Using Hierarchical RNN with Query-aware Attention , 2018, CIKM.

[10]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[11]  Yelong Shen,et al.  A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval , 2014, CIKM.

[12]  Michael Röder,et al.  Exploring the Space of Topic Coherence Measures , 2015, WSDM.

[13]  Ji-Rong Wen,et al.  WWW 2007 / Track: Search Session: Personalization A Largescale Evaluation and Analysis of Personalized Search Strategies ABSTRACT , 2022 .

[14]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[15]  Ji-Rong Wen,et al.  PSGAN: A Minimax Game for Personalized Search with Limited and Noisy Click Data , 2019, SIGIR.

[16]  Nazli Goharian,et al.  CEDR: Contextualized Embeddings for Document Ranking , 2019, SIGIR.

[17]  Yiqun Liu,et al.  An Analysis of BERT in Document Ranking , 2020, SIGIR.

[18]  Zhiyuan Liu,et al.  Understanding the Behaviors of BERT in Ranking , 2019, ArXiv.

[19]  Fabio Crestani,et al.  Building user profiles from topic models for personalised search , 2013, CIKM.

[20]  Larry P. Heck,et al.  Learning deep structured semantic models for web search using clickthrough data , 2013, CIKM.

[21]  Ian Ruthven,et al.  Improving social bookmark search using personalised latent variable language models , 2011, WSDM '11.

[22]  Fabio Crestani,et al.  Towards query log based personalization using topic models , 2010, CIKM.

[23]  Ji-Rong Wen,et al.  RLPer: A Reinforcement Learning Model for Personalized Search , 2020, WWW.

[24]  Abdur Chowdhury,et al.  A picture of search , 2006, InfoScale '06.

[25]  Kai-Wei Chang,et al.  Context Attentive Document Ranking and Query Suggestion , 2019, SIGIR.

[26]  Ji-Rong Wen,et al.  PSTIE: Time Information Enhanced Personalized Search , 2020, CIKM.

[27]  Wei Chu,et al.  Modeling the impact of short- and long-term behavior on search personalization , 2012, SIGIR '12.

[28]  W. Bruce Croft,et al.  A Deep Relevance Matching Model for Ad-hoc Retrieval , 2016, CIKM.

[29]  Ji-Rong Wen,et al.  Knowledge Enhanced Personalized Search , 2020, SIGIR.

[30]  Maria Liakata,et al.  tBERT: Topic Models and BERT Joining Forces for Semantic Similarity Detection , 2020, ACL.

[31]  Nisheeth Shrivastava,et al.  Know your personalization: learning topic level personalization in online services , 2012, WWW.

[32]  Alessandro Micarelli,et al.  User Profiles for Personalized Information Access , 2007, The Adaptive Web.

[33]  Jianfeng Gao,et al.  Clickthrough-based latent semantic models for web search , 2011, SIGIR.