Time-dependent density functional theory calculations of molecular static and dynamic polarizabilities, cauchy coefficients and their anisotropies with atomic numerical basis functions

Abstract Static and dynamic polarizabilities of a range of small first row compounds have been calculated with time-dependent density functional theory in the local spin-density approximation using numerical atomic basis sets. The results are compared to earlier computational work, in particular the work of Van Caillie and Amos [C. Van Caillie, R.D. Amos, Chem. Phys. Lett. 291 (1998) 71], as well as experimental values. The results for static isotropic and anisotropic polarizabilities of H 2 O, N 2 , CO, NH 3 , and CH 4 are in good agreement with previous calculations. The results for the dynamic polarizabilities as expressed in the S (−4) Cauchy coefficients and their anisotropies for H 2 O, N 2 , CO 2 , NH 3 , CH 4 , C 2 H 2 , C 2 H 4 and C 2 H 6 are also in good agreement with previous results. We have also explored the scaling of our implementation of the time-dependent coupled-perturbed Kohn–Sham equations by evaluating the static and dynamic polarizabilities of bifurcated water chains ranging from 1–20 molecules in size.

[1]  Ashok Kumar,et al.  Dipole oscillator strength distributions and properties for SO2, CS2, and OCS' , 1985 .

[2]  D. Dixon,et al.  Density functional theory prediction of the second-order hyperpolarizability of metalloporphines , 1995 .

[3]  William J. Meath,et al.  Dispersion energy constants C 6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O , 1977 .

[4]  M. E. Casida,et al.  Comparison of local‐density and Hartree–Fock calculations of molecular polarizabilities and hyperpolarizabilities , 1993 .

[5]  R. Thuraisingham,et al.  Dipole oscillator strength properties and dispersion energy coefficients for H2S , 1988 .

[6]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[7]  R. Bartlett,et al.  Frequency-dependent hyperpolarizabilities in the coupled-cluster method: the Kerr effect for molecules , 1995 .

[8]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[9]  G. Diercksen,et al.  Comparison between equation of motion and polarization propagator calculations , 1985 .

[10]  Ashok Kumar,et al.  Integrated dipole oscillator strengths and dipole properties for Ne, Ar, Kr, Xe, HF, HCl, and HBr , 1985 .

[11]  B. Delley,et al.  Analytic energy derivatives in the numerical local‐density‐functional approach , 1991 .

[12]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[13]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[14]  Andrew Zangwill,et al.  Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases , 1980 .

[15]  A. Zangwill Density functional theory of nonlinear optical response , 1983 .

[16]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[17]  Feng Long Gu,et al.  Extension of the Genkin and Mednis treatment for dynamic polarizabilities and hyperpolarizabilities of infinite periodic systems. I. Coupled perturbed Hartree–Fock theory , 2000 .

[18]  J. G. Snijders,et al.  Improved density functional theory results for frequency‐dependent polarizabilities, by the use of an exchange‐correlation potential with correct asymptotic behavior , 1996 .

[19]  D. M. Bishop,et al.  Simple finite field method for calculation of static and dynamic vibrational hyperpolarizabilities: Curvature contributions , 1998 .

[20]  A. Becke,et al.  Local Density-Functional Polarizabilities and Hyperpolarizabilities at the Basis-Set Limit , 1996 .

[21]  D. Dixon,et al.  Density functional theory predictions of polarizabilities and first- and second-order hyperpolarizabilities for molecular systems , 1994 .

[22]  B. Delley DMol3 DFT studies: from molecules and molecular environments to surfaces and solids , 2000 .

[23]  Aaron M. Lee,et al.  The determination of hyperpolarizabilities using density functional theory with nonlocal functionals , 1994 .

[24]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[25]  Bernard Kirtman,et al.  AB INITIO FINITE OLIGOMER METHOD FOR NONLINEAR OPTICAL PROPERTIES OF CONJUGATED POLYMERS : NONRESONANT FREQUENCY DISPERSION IN POLYACETYLENE , 1996 .

[26]  Closed-form expression relating the second-order component of the density functional theory correlation energy to its functional derivative , 1998 .

[27]  Gerald D. Mahan,et al.  Modified Sternheimer equation for polarizability , 1980 .

[28]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[29]  W. J. Meath,et al.  Dipole oscillator strength distributions and related properties for ethylene, propene and 1-butene , 1983 .

[30]  M. Spackman Time‐dependent Hartree–Fock second‐order molecular properties with a moderately sized basis set. I. The frequency dependence of the dipole polarizability , 1991 .

[31]  Roger D. Amos,et al.  Static and dynamic polarisabilities, Cauchy coefficients and their anisotropies: a comparison of standard methods , 1998 .

[32]  V. Kellö,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[33]  N. Rösch,et al.  Density- and density-matrix-based coupled Kohn–Sham methods for dynamic polarizabilities and excitation energies of molecules , 1999 .

[34]  Handy,et al.  Determination of frequency-dependent polarizabilities using current density-functional theory. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[35]  D. J. Dawson,et al.  Dipole oscillator strength distributions, sums, and some related properties for Li, N, O, H2, N2, O2, NH3, H2O, NO, and N2O , 1977 .

[36]  P. Calaminici,et al.  Density functional calculations of molecular polarizabilities and hyperpolarizabilities , 1998 .

[37]  M. Petersilka,et al.  DENSITY FUNCTIONAL THEORY OF TIME-DEPENDENT PHENOMENA , 1996 .

[38]  William F. Murphy,et al.  The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule , 1977 .

[39]  R. Leeuwen,et al.  Causality and symmetry in time-dependent density-functional theory , 1998 .

[40]  D. M. Bishop,et al.  ADDITIONAL COMPACT FORMULAS FOR VIBRATIONAL DYNAMIC DIPOLE POLARIZABILITIES AND HYPERPOLARIZABILITIES , 1998 .

[41]  Malcolm J. Stott,et al.  Linear-response theory within the density-functional formalism: Application to atomic polarizabilities , 1980 .

[42]  D. Dixon,et al.  Density Functional Study of the Structures and Nonlinear Optical Properties of Urea , 1994 .

[43]  Andreas Görling,et al.  Exact exchange kernel for time‐dependent density‐functional theory , 1998 .

[44]  N. Handy,et al.  The determination of hyperpolarisabilities using density functional theory , 1993 .

[45]  M. Petersilka,et al.  Excitation energies from time-dependent density-functional theory. , 1996 .

[46]  Hideo Sekino,et al.  Frequency dependent nonlinear optical properties of molecules , 1986 .

[47]  Evert Jan Baerends,et al.  Density functional results for isotropic and anisotropic multipole polarizabilities and C6, C7, and C8 Van der Waals dispersion coefficients for molecules , 1997 .

[48]  D. M. Bishop,et al.  Coupled-perturbed Hartree–Fock theory for infinite periodic systems: Calculation of static electric properties of (LiH)n, (FH)n, (H2O)n, (–CNH–)n, and (–CH=CH–)n , 2001 .