Second Order Stochastic Target Problems
暂无分享,去创建一个
[1] Nizar Touzi,et al. A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs , 2009, 0905.1863.
[2] Thaleia Zariphopoulou,et al. A solution approach to valuation with unhedgeable risks , 2001, Finance Stochastics.
[3] R. Tevzadze. Solvability of backward stochastic differential equations with quadratic growth , 2007, math/0703484.
[4] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[5] P. Protter,et al. Pricing Options in an Extended Black Scholes Economy with Illiquidity: Theory and Empirical Evidence , 2006 .
[6] H. Soner,et al. The multi-dimensional super-replication problem under gamma constraints , 2005 .
[7] W. Fleming,et al. Controlled Markov processes and viscosity solutions , 1992 .
[8] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[9] H. Soner,et al. Small time path behavior of double stochastic integrals and applications to stochastic control , 2005, math/0602453.
[10] H. Kushner. Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .
[11] J. Bismut. Conjugate convex functions in optimal stochastic control , 1973 .
[12] G. Barles,et al. Convergence of approximation schemes for fully nonlinear second order equations , 1991 .
[13] M. Morlais. Equations différentielles stochastiques rétrogrades à croissance quadratique et applications , 2007 .
[14] P. Reny. On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games , 1999 .
[15] M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth , 2000 .
[16] J. Wang,et al. Maximal Use of Central Differencing for Hamilton-Jacobi-Bellman PDEs in Finance , 2008, SIAM J. Numer. Anal..
[17] Peter A. Forsyth,et al. Numerical convergence properties of option pricing PDEs with uncertain volatility , 2003 .
[18] N. Karoui,et al. Backward Stochastic Differential Equations , 1997 .
[19] Nizar Touzi,et al. The Dynamic Programming Equation for Second Order Stochastic Target Problems , 2009, SIAM J. Control. Optim..
[20] N. Krylov. Controlled Diffusion Processes , 1980 .
[21] N. Karoui,et al. Controle de processus de Markov , 1988 .
[22] S. Peng,et al. Backward Stochastic Differential Equations in Finance , 1997 .
[23] Guy Barles,et al. Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations , 2007, Math. Comput..
[24] H. Soner,et al. Dynamic programming for stochastic target problems and geometric flows , 2002 .
[25] Peter Bank,et al. Hedging and Portfolio Optimization in Financial Markets with a Large Trader , 2004 .
[26] Nicole El Karoui,et al. Pricing Via Utility Maximization and Entropy , 2000 .
[27] S. Shreve,et al. Methods of Mathematical Finance , 2010 .
[28] R. C. Merton,et al. Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case , 1969 .
[29] G. Barles,et al. CONVERGENCE OF NUMERICAL SCHEMES FOR PARABOLIC EQUATIONS ARISING IN FINANCE THEORY , 1995 .
[30] Philip Protter,et al. Liquidity Risk and Arbitrage Pricing Theory , 2004 .
[31] J. Frédéric Bonnans,et al. Consistency of Generalized Finite Difference Schemes for the Stochastic HJB Equation , 2003, SIAM J. Numer. Anal..
[32] Nizar Touzi,et al. Wellposedness of second order backward SDEs , 2010, 1003.6053.
[33] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[34] R. C. Merton,et al. Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .
[35] P. Forsyth,et al. PDE methods for pricing barrier options , 2000 .
[36] Tyrone E. Duncan,et al. Numerical Methods for Stochastic Control Problems in Continuous Time (Harold J. Kushner and Paul G. Dupuis) , 1994, SIAM Rev..
[37] P. Imkeller,et al. Utility maximization in incomplete markets , 2005, math/0508448.
[38] Nizar Touzi,et al. Option hedging for small investors under liquidity costs , 2010, Finance Stochastics.
[39] H. Soner,et al. Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.
[40] S. Peng,et al. Adapted solution of a backward stochastic differential equation , 1990 .