Small eigenvalues of Schr\"odinger operators over geometrically finite manifolds

We estimate the number of small eigenvalues of Schrödinger operators on Riemannian vector bundles over geometrically finite manifolds.

[1]  Brian H. Bowditch,et al.  Geometrical finiteness with variable negative curvature , 1995 .

[2]  Michael T. Anderson Convergence and rigidity of manifolds under Ricci curvature bounds , 1990 .

[3]  Classification of negatively pinched manifolds with amenable fundamental groups , 2004, math/0402268.

[4]  A lower bound for the first eigenvalue of a finite-volume negatively curved manifold , 1987 .

[5]  H. Donnelly The differential form spectrum of hyperbolic space , 1981 .

[6]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[7]  H. Donnelly On the essential spectrum of a complete Riemannian manifold , 1981 .

[8]  P. Buser,et al.  Tubes and eigenvalues for negatively curved manifolds , 1993 .

[9]  Werner Ballmann,et al.  On the essential spectrum of differential operators over geometrically finite orbifolds , 2021 .

[10]  H. P. McKean,et al.  An upper bound to the spectrum of $\Delta $ on a manifold of negative curvature , 1970 .

[11]  Panagiotis Polymerakis On the Spectrum of Differential Operators Under Riemannian Coverings , 2018, The Journal of Geometric Analysis.

[12]  On the Betti Numbers of Finite Volume Hyperbolic Manifolds. , 2020, 2009.11431.

[13]  H. Karcher,et al.  Geometrische Methoden zur Gewinnung von A-Priori-Schranken für harmonische Abbildungen , 1982 .

[14]  E. Pedon Harmonic analysis for differential forms on complex hyperbolic spaces , 1999 .

[15]  W. Ballmann,et al.  On the spectral theory of manifolds with cusps , 2001 .

[16]  R. Phillips,et al.  Hodge theory on hyperbolic manifolds , 1990 .

[17]  M. Gromov,et al.  Manifolds of Nonpositive Curvature , 1985 .

[18]  Small eigenvalues of surfaces of finite type , 2015, Compositio Mathematica.

[19]  Jialun Li Finiteness of small eigenvalues of geometrically finite rank one locally symmetric manifolds , 2018, Mathematical Research Letters.

[20]  Ursula Hamenstiidt Small eigenvalues of geometrically finite manifolds , 2004 .