A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity

This paper concerns the numerical analysis of the pseudospectral boundary integral method for the solution of linear boundary value problems for the vector Laplace equation in a three-dimensional (...

[1]  C. Truesdell,et al.  The Non-Linear Field Theories of Mechanics , 1965 .

[2]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[3]  G. C. Hsiao,et al.  Surface gradients and continuity properties for some integral operators in classical scattering theory , 1989 .

[4]  Ian H. Sloan,et al.  Polynomial interpolation and hyperinterpolation over general regions , 1995 .

[5]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[6]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[7]  E. Allgower,et al.  Exploiting symmetry in boundary element methods , 1992 .

[8]  R. Kress Linear Integral Equations , 1989 .

[9]  F. R. Miller,et al.  Differential manifolds and theoretical physics , 1985 .

[10]  S. Spector,et al.  The formation of filamentary voids in solids , 1991 .

[11]  William McLean,et al.  A spectral Galerkin method for a boundary integral equation , 1986 .

[12]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[13]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[14]  Martin Costabel,et al.  Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation , 1985 .

[15]  David L. Ragozin,et al.  Polynomial approximation on compact manifolds and homogeneous spaces , 1970 .

[16]  J. Ball,et al.  W1,p-quasiconvexity and variational problems for multiple integrals , 1984 .

[17]  Manifolds and mechanics , 1987 .