Frequency of symbol occurrences in bicomponent stochastic models

We give asymptotic estimates of the frequency of occurrences of a symbol in a random word generated by any bicomponent stochastic model. More precisely, we consider the random variable Yn, representing the number of occurrences of a given symbol in a word of length n generated at random; the stochastic model is defined by a rational formal series r having a linear representation with two primitive components. This model includes the case when r is the product or the sum of two primitive rational formal series. We obtain asymptotic evaluations for the mean value and the variance of Yn and its limit distribution.

[1]  Boris Gnedenko,et al.  Theory of Probability , 1963 .

[2]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[3]  Jérémie Bourdon,et al.  Generalized Pattern Matching Statistics , 2002 .

[4]  Hsien-Kuei Hwang,et al.  Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques , 1994 .

[5]  Alberto Bertoni,et al.  On the number of occurrences of a symbol in words of regular languages , 2003, Theor. Comput. Sci..

[6]  Alain Denise,et al.  Uniform random generation of words of rational languages , 1996 .

[7]  Leonidas J. Guibas,et al.  String Overlaps, Pattern Matching, and Nontransitive Games , 1981, J. Comb. Theory A.

[8]  Bernard Prum,et al.  Finding words with unexpected frequencies in deoxyribonucleic acid sequences , 1995 .

[9]  Alberto Bertoni,et al.  Local Limit Distributions in Pattern Statistics: Beyond the Markovian Models , 2004, STACS.

[10]  Craig A. Stewart,et al.  Introduction to computational biology , 2005 .

[11]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[12]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[13]  Philippe Flajolet,et al.  The Average Case Analysis of Algorithms : Multivariate Asymptotics and Limit Distributions , 1997 .

[14]  Marco C. Bettoni,et al.  Experience Management: Lessons Learned from Knowledge Engineering , 2002, German Workshop on Experience Management.

[15]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[16]  Philippe Flajolet,et al.  Motif statistics , 1999, Theor. Comput. Sci..

[17]  Leo J. Guibas,et al.  Maximal Prefix-Synchronized Codes , 1978 .

[18]  Stephen Wolfram,et al.  The Mathematica book (4th edition) , 1999 .

[19]  M S Gelfand,et al.  Prediction of function in DNA sequence analysis. , 1995, Journal of computational biology : a journal of computational molecular cell biology.

[20]  Mireille Régnier,et al.  On Pattern Frequency Occurrences in a Markovian Sequence , 1998, Algorithmica.

[21]  Alain Denise Génération aléatoire uniforme de mots de langages rationnels , 1996, Theor. Comput. Sci..

[22]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .