Lossless Data Embedding With High Embedding Capacity Based on Declustering for VQ-Compressed Codes

The purpose of data hiding with reversibility property is to recover the original cover media after extracting the hidden data from the stegomedia. In this paper, we propose a reversible data-hiding scheme for embedding secret data in VQ-compressed codes based on the declustering strategy and the similarity property of adjacent areas in a natural image. Two declustering methods are proposed using the minimum-spanning-tree and the short-spanning-path algorithms, respectively. The proposed data-hiding method can achieve the benefits including easy implementation, completely recovering the original compressed codes, and high efficiency of embedding and extraction processes. The experimental results also show that the proposed method has more flexible and higher embedding capacity than other schemes.

[1]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[2]  R. Prim Shortest connection networks and some generalizations , 1957 .

[3]  Xiaolin Wu,et al.  A new framework of LSB steganalysis of digital media , 2005, IEEE Transactions on Signal Processing.

[4]  Adnan M. Alattar,et al.  > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < Reversible Watermark Using the Difference Expansion of A Generalized Integer Transform , 2022 .

[5]  A. Murat Tekalp,et al.  Reversible data hiding , 2002, Proceedings. International Conference on Image Processing.

[6]  W.-J. Hsu,et al.  Adaptive data hiding based on VQ compressed images , 2003 .

[7]  Chin-Chen Chang,et al.  Hiding secret data in images via predictive coding , 2005, Pattern Recognit..

[8]  Jun Tian,et al.  Reversible data embedding using a difference expansion , 2003, IEEE Trans. Circuits Syst. Video Technol..

[9]  Kenneth Steiglitz,et al.  Some complexity results for the Traveling Salesman Problem , 1976, STOC '76.

[10]  Jia-Shung Wang,et al.  Three-sided side match finite-state vector quantization , 2000, IEEE Trans. Circuits Syst. Video Technol..

[11]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[12]  Henk J. A. M. Heijmans,et al.  Reversible data embedding into images using wavelet techniques and sorting , 2005, IEEE Transactions on Image Processing.

[13]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[14]  Touradj Ebrahimi,et al.  Christopoulos: Thc Jpeg2000 Still Image Coding System: an Overview the Jpeg2000 Still Image Coding System: an Overview , 2022 .

[15]  Sheng-He Sun,et al.  Digital image watermarking technique based on vector quantisation , 2000 .

[16]  Chin-Chen Chang,et al.  A Reversible Data Hiding Scheme Based on Side Match Vector Quantization , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  Sorina Dumitrescu,et al.  Detection of LSB steganography via sample pair analysis , 2002, IEEE Trans. Signal Process..

[18]  Chin-Chen Chang,et al.  The Idea of De-Clustering and its Applications , 1986, VLDB.

[19]  Edward J. Delp,et al.  Digital watermarking: algorithms and applications , 2001, IEEE Signal Process. Mag..

[20]  O. Roeva,et al.  Information Hiding: Techniques for Steganography and Digital Watermarking , 2000 .

[21]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[22]  Jessica J. Fridrich,et al.  Lossless Data Embedding—New Paradigm in Digital Watermarking , 2002, EURASIP J. Adv. Signal Process..

[23]  Chin-Chen Chang,et al.  Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy , 2003, Pattern Recognit..

[24]  Chin-Chen Chang,et al.  Reversible Steganography for VQ-Compressed Images Using Side Matching and Relocation , 2006, IEEE Transactions on Information Forensics and Security.

[25]  Christophe De Vleeschouwer,et al.  Circular interpretation of bijective transformations in lossless watermarking for media asset management , 2003, IEEE Trans. Multim..