A physical interpretation of fractional-order-derivatives in a jerk system: Electronic approach

Abstract In this paper, a physical interpretation of the fractional-order-derivatives effects in a jerk system, based on Unstable Dissipative Systems (UDS), and a Saturated Non-Linear Function (SNLF), is presented. The system is electronically implemented in Multisim development platform for a 9-scrolls attractor generation. The behavior is analyzed trough the Detrended Fluctuation Analysis (DFA), Probability Density Function (PDF), bifurcation diagrams, and the implementation of a geometrical analysis of the phase space. The changes that the system undergoes when a fractional-order are analyzed. The results show that when the fractional integration-orders are considered, the areas of the generated attractor are modified with respect to the integer-order dynamic. The long-range correlations in the system are also modified because of the fractional-orders. Besides, a particular phenomenon in the equilibrium points preference occurs, which is induced when the fractional integration-order is applied in only one of the state variables.

[1]  M. Denham Canonical forms for the identification of multivariable linear systems , 1974 .

[2]  Guanrong Chen,et al.  A general multiscroll Lorenz system family and its realization via digital signal processors. , 2006, Chaos.

[3]  Henry Leung,et al.  Experimental verification of multidirectional multiscroll chaotic attractors , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Rider Jaimes-Reátegui,et al.  Family of Bistable Attractors Contained in an Unstable Dissipative Switching System Associated to a SNLF , 2018, Complex..

[5]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[6]  E. Campos-Cant'on,et al.  Nonclassical point of view of the Brownian motion generation via fractional deterministic model , 2018, 1802.04382.

[7]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[8]  Eric Campos-Cantón,et al.  Multistability in Piecewise Linear Systems versus Eigenspectra Variation and Round Function , 2016, Int. J. Bifurc. Chaos.

[9]  J. Suykens,et al.  Experimental confirmation of 3- and 5-scroll attractors from a generalized Chua's circuit , 2000 .

[10]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[11]  E. Campos-Cantón,et al.  Strange attractors generated by a fractional order switching system and its topological horseshoe , 2016 .

[12]  J. L. Echenausía-Monroy,et al.  A novel approach to generate attractors with a high number of scrolls , 2019, Nonlinear Analysis: Hybrid Systems.

[13]  Juebang Yu,et al.  Chaos in the fractional order periodically forced complex Duffing’s oscillators , 2005 .

[14]  Zakia Hammouch,et al.  Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system , 2018, Complex & Intelligent Systems.

[15]  J. Willems,et al.  Parametrizations of linear dynamical systems: Canonical forms and identifiability , 1974 .

[16]  Shuyi Shao,et al.  Circuit Implementations, Bifurcations and Chaos of a Novel Fractional-Order Dynamical System* , 2015 .

[17]  Ahmed S. Elwakil,et al.  Measurement of Supercapacitor Fractional-Order Model Parameters From Voltage-Excited Step Response , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[18]  Junguo Lu Chaotic dynamics of the fractional-order Lü system and its synchronization , 2006 .

[19]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  J. Suykens,et al.  Generation of n-double scrolls (n=1, 2, 3, 4,...) , 1993 .

[21]  Luis A. Aguirre,et al.  Dynamical analysis of fractional-order Rössler and modified Lorenz systems , 2013 .

[22]  Ralf Eichhorn,et al.  Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows , 1998 .

[23]  Rider Jaimes-Reátegui,et al.  Parametric control for multiscroll generation: Electronic implementation and equilibrium analysis , 2020 .

[24]  Qigui Yang,et al.  Parameter identification and synchronization of fractional-order chaotic systems , 2012 .

[25]  L. Chua The Genesis of Chua's circuit , 1992 .

[26]  Xinghuo Yu,et al.  Chaos control : theory and applications , 2003 .

[27]  Hadi Delavari,et al.  Chaos in fractional-order Genesio–Tesi system and its synchronization , 2012 .

[28]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[29]  E. Campos-Cantón,et al.  Generation of Dynamical S-Boxes for Block Ciphers via Extended Logistic Map , 2020 .

[30]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[31]  Xinghuo Yu,et al.  Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method , 2004, Autom..

[32]  Leon O. Chua,et al.  A family of n-scroll attractors from a generalized Chua's circuit , 1997 .

[33]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[34]  Yongjian Liu,et al.  A New Fractional-Order Chaotic System and Its Synchronization with Circuit Simulation , 2012, Circuits, Systems, and Signal Processing.

[35]  E Campos-Cantón,et al.  On multistability behavior of unstable dissipative systems. , 2018, Chaos.

[36]  Eric Campos-Cantón,et al.  Chaotic attractors based on unstable dissipative systems via third-order differential equation , 2016 .

[37]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[38]  Eric Campos-Cantón,et al.  Analog Electronic Implementation of a Class of Hybrid Dissipative Dynamical System , 2016, Int. J. Bifurc. Chaos.

[39]  Guanrong Chen,et al.  Generation of n-scroll attractors via sine function , 2001 .

[40]  Roger Chiu,et al.  Design and implementation of a jerk circuit using a hybrid analog-digital system , 2019 .

[41]  Giuseppe Grassi,et al.  Observer-Based Synchronization for a Class of fractional Chaotic Systems via a Scalar Signal: Results Involving the Exact Solution of the Error Dynamics , 2011, Int. J. Bifurc. Chaos.

[42]  M. Jleli,et al.  Generalization of Caputo-Fabrizio Fractional Derivative and Applications to Electrical Circuits , 2020, Frontiers in Physics.

[43]  Rider Jaimes-Reátegui,et al.  Multistability Emergence through Fractional-Order-Derivatives in a PWL Multi-Scroll System , 2020, Electronics.

[44]  Pekka Orponen,et al.  A Survey of Continous-Time Computation Theory , 1997, Advances in Algorithms, Languages, and Complexity.

[45]  Johan A. K. Suykens,et al.  n-scroll chaos generators: a simple circuit model , 2001 .

[46]  Jesus M. Munoz-Pacheco,et al.  Chaos generation in fractional-order switched systems and its digital implementation , 2017 .

[47]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[48]  Alexander N. Pisarchik,et al.  Statistical analysis of symbolic dynamics in weakly coupled chaotic oscillators , 2018, Commun. Nonlinear Sci. Numer. Simul..

[49]  Jürgen Kurths,et al.  Equivalent system for a multiple-rational-order fractional differential system , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Ahmed S Elwakil,et al.  Fractional-order circuits and systems: An emerging interdisciplinary research area , 2010, IEEE Circuits and Systems Magazine.

[51]  Alexander N. Pisarchik,et al.  An approach to generate deterministic Brownian motion , 2014, Commun. Nonlinear Sci. Numer. Simul..

[52]  Robert W. Newcomb,et al.  Chaos generation using binary hysteresis , 1986 .

[53]  Stefan J. Linz,et al.  Newtonian jerky dynamics: Some general properties , 1998 .

[54]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  S. Bhalekar,et al.  Singular points in the solution trajectories of fractional order dynamical systems. , 2018, Chaos.