Chromatin domains as potential units of eukaryotic gene function.

[1]  Renato Paro,et al.  Mapping polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin , 1993, Cell.

[2]  K. Zaret,et al.  An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array , 1993, Cell.

[3]  B. Turner Decoding the nucleosome , 1993, Cell.

[4]  V. Corces,et al.  A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. , 1993, Genes & development.

[5]  T. Jenuwein,et al.  The immunoglobulin mu enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation. , 1993, Genes & development.

[6]  G. Felsenfeld,et al.  A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila , 1993, Cell.

[7]  Sanjay K. Chhablani,et al.  Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. , 1993, Genes & development.

[8]  F. Grosveld,et al.  Transcriptional regulation of multigene loci: multilevel control. , 1993, Trends in genetics : TIG.

[9]  J. Lawrence,et al.  Germ line transmission of a yeast artificial chromosome spanning the murine alpha 1(I) collagen locus. , 1993, Science.

[10]  G. Kelsey,et al.  A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice , 1993, Nature.

[11]  F. Grosveld,et al.  The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region. , 1993, The EMBO journal.

[12]  V. Pirrotta,et al.  The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position‐effects. , 1993, The EMBO journal.

[13]  Alan P. Wolffe,et al.  A positive role for histone acetylation in transcription factor access to nucleosomal DNA , 1993, Cell.

[14]  U. K. Laemmli,et al.  A model for chromatin opening: stimulation of topoisomerase II and restriction enzyme cleavage of chromatin by distamycin. , 1993, The EMBO journal.

[15]  K. Fascher,et al.  Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication , 1992, Cell.

[16]  M. Shimizu,et al.  Nucleosomes are positioned with base pair precision adjacent to the alpha 2 operator in Saccharomyces cerevisiae. , 1991, The EMBO journal.

[17]  F. Grosveld,et al.  Importance of globin gene order for correct developmental expression. , 1991, Genes & development.

[18]  H. Eggert,et al.  An ectopic copy of the Drosophila ftz associated SAR neither reorganizes local chromatin structure nor hinders elution of a chromatin fragment from isolated nuclei. , 1991, The EMBO journal.

[19]  Adrian Bird,et al.  DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein , 1991, Cell.

[20]  Paul Schedl,et al.  A position-effect assay for boundaries of higher order chromosomal domains , 1991, Cell.

[21]  G. Hager,et al.  Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter , 1991, Molecular and cellular biology.

[22]  W. C. Forrester,et al.  A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. , 1990, Genes & development.

[23]  F. Grosveld,et al.  Detailed analysis of the site 3 region of the human beta‐globin dominant control region. , 1990, The EMBO journal.

[24]  D. Jackson,et al.  The size of chromatin loops in HeLa cells. , 1990, The EMBO journal.

[25]  A. E. Sippel,et al.  A nuclear DNA attachment element mediates elevated and position-independent gene activity , 1989, Nature.

[26]  B. Daneholt,et al.  The ultrastructure of upstream and downstream regions of an active Balbiani ring gene , 1989, Cell.

[27]  M. Grunstein,et al.  Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. , 1988, The EMBO journal.

[28]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[29]  C. Cantor,et al.  Nucleosomes are phased along the mouse β-major globin gene in erythroid and nonerythroid cells , 1986, Cell.

[30]  G. Felsenfeld,et al.  Structure of the 30 nm chromatin fiber , 1986, Cell.

[31]  A. Klug,et al.  Structure of the nucleosome core particle at 7 Å resolution , 1984, Nature.

[32]  W I Wood,et al.  Chromatin structure of the chicken beta-globin gene region. Sensitivity to DNase I, micrococcal nuclease, and DNase II. , 1982, The Journal of biological chemistry.

[33]  T. Jovin,et al.  Z* DNA, the left‐handed helical form of poly[d(G‐C)] in MgCl2‐ethanol, is biologically active. , 1982, The EMBO journal.

[34]  J. Banerji,et al.  Expression of a β-globin gene is enhanced by remote SV40 DNA sequences , 1981, Cell.

[35]  P. Chambon,et al.  The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. , 1981, Nucleic acids research.

[36]  M. Groudine,et al.  Chromosomal subunits in active genes have an altered conformation. , 1976, Science.

[37]  A. E. Sippel,et al.  The regulatory domain organization of eukaryotic genomes: implications for stable gene transfer. , 1992 .