Concentration theorem for tripartite LDPC codes

This paper presents the framework of tripartite LDPC codes and more than a single coded bit affects its channel outputs. Symbol-nodes along with variable-nodes and check-nodes of the graph of an LDPC codes is used to represent a third set of nodes in channel output. Thus the concentration theorem is considered in this framework, which optimizes the average performance of the codes and the design criterion is meaningful for a randomly chosen sample from the ensemble of LDPC codes.

[1]  Ran Gozali,et al.  Space-Time Codes for High Data Rate Wireless Communications , 2002 .

[2]  H. Jafarkhani,et al.  Space-time low-density parity-check codes , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[3]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[4]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[5]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[6]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[7]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[8]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[9]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[10]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[11]  M. Luby,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[12]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[13]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[14]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[15]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[16]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[17]  Sergio Benedetto,et al.  Serial concatenation of block and convolutional codes , 1996 .

[18]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[19]  Aamod Khandekar,et al.  Irregular repeat accumulate codes for non-binary modulation schemes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[20]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[21]  Brendan J. Frey,et al.  Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models , 1998, IEEE J. Sel. Areas Commun..