Equivariant Gröbner bases

Algorithmic computation in polynomial rings is a classical topic in mathematics. However, little attention has been given to the case of rings with an infinite number of variables until recently when theoretical efforts have made possible the development of effective routines. Ability to compute relies on finite generation up to symmetry for ideals invariant under a large group or monoid action, such as the permutations of the natural numbers. We summarize the current state of theory and applications for equivariant Gröbner bases, develop several algorithms to compute them, showcase our software implementation, and close with several open problems and computational challenges.

[1]  U. Nagel,et al.  Equivariant Hilbert Series of Monomial Orbits , 2016, 1608.06372.

[2]  Christopher J. Hillar,et al.  Corrigendum to "Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals" [J. Symb. Comput. 50(March 2013) 314-334] , 2016, J. Symb. Comput..

[3]  Robert Krone,et al.  Equivariant Gröbner Bases of Symmetric Toric Ideals , 2016, ISSAC.

[4]  Shuhong Gao,et al.  A new framework for computing Gröbner bases , 2015, Math. Comput..

[5]  Steven V. Sam,et al.  Gröbner methods for representations of combinatorial categories , 2014, 1409.1670.

[6]  Uwe Nagel,et al.  Equivariant Hilbert Series in non-Noetherian Polynomial Rings , 2015, 1510.02757.

[7]  D. Erman,et al.  Asymptotics of random Betti tables , 2012, 1207.5467.

[8]  J. Draisma,et al.  Finiteness results for Abelian tree models , 2012, 1207.1282.

[9]  J. Draisma,et al.  Plücker varieties and higher secants of Sato's Grassmannian , 2014, 1402.1667.

[10]  Anton Leykin,et al.  Equivariant lattice generators and Markov bases , 2014, ISSAC.

[11]  Jan Draisma,et al.  Bounded-rank tensors are defined in bounded degree , 2011, 1103.5336.

[12]  Jan Draisma,et al.  Noetherianity up to Symmetry , 2013, 1310.1705.

[13]  Anton Leykin,et al.  Noetherianity for infinite-dimensional toric varieties , 2013, 1306.0828.

[14]  Abraham Martín del Campo,et al.  Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals , 2011, J. Symb. Comput..

[15]  O. Randal-Williams HOMOLOGICAL STABILITY FOR UNORDERED CONFIGURATION SPACES , 2011, 1105.5257.

[16]  Thomas Church Homological stability for configuration spaces of manifolds , 2011, 1103.2441.

[17]  R. Lazarsfeld,et al.  Asymptotic syzygies of algebraic varieties , 2011, 1103.0483.

[18]  Andries E. Brouwer,et al.  Equivariant Gröbner bases and the Gaussian two-factor model , 2011, Math. Comput..

[19]  ANDREW SNOWDEN SYZYGIES OF SEGRE EMBEDDINGS AND ∆-MODULES , 2011 .

[20]  Seth Sullivant,et al.  Finite Groebner bases in infinite dimensional polynomial rings and applications , 2009, 0908.1777.

[21]  Andrew Snowden,et al.  The equations for the moduli space of $n$ points on the line , 2009 .

[22]  A. I. Shirshov Some Algorithmic Problems for ε-algebras , 2009 .

[23]  Jan Draisma,et al.  Finiteness for the k-factor model and chirality varieties , 2008, 0811.3503.

[24]  Matthias Aschenbrenner,et al.  An algorithm for finding symmetric Grobner bases in infinite dimensional rings , 2008, ISSAC '08.

[25]  Jan Draisma,et al.  On the ideals of equivariant tree models , 2007, 0712.3230.

[26]  S. Sullivant,et al.  A finiteness theorem for Markov bases of hierarchical models , 2004, J. Comb. Theory, Ser. A.

[27]  Justin A James Some decision problems in group theory , 2006 .

[28]  M. Drton,et al.  Algebraic factor analysis: tetrads, pentads and beyond , 2005, math/0509390.

[29]  Matthias Aschenbrenner,et al.  Finite generation of symmetric ideals , 2004, math/0411514.

[30]  C. Hillar,et al.  Polynomial recurrences and cyclic resultants , 2004, math/0411414.

[31]  Michael Abramson,et al.  Contributions to constructive polynomial ideal theory XXIII: forgotten works of Leningrad mathematician N. M. Gjunter on polynomial ideal theory , 2003, SIGS.

[32]  A. Takemura,et al.  Minimal Basis for a Connected Markov Chain over 3 × 3 ×K Contingency Tables with Fixed Two‐Dimensional Marginals , 2003 .

[33]  B. Sturmfels,et al.  Higher Lawrence configurations , 2002, J. Comb. Theory, Ser. A.

[34]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[35]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[36]  Daniel E. Cohen,et al.  Closure Relations, Buchberger's Algorithm, and Polynomials in Infinitely Many Variables , 1987, Computation Theory and Logic.

[37]  G. Bergman The diamond lemma for ring theory , 1978 .

[38]  L. A. Bokut,et al.  Embeddings into simple associative algebras , 1976 .

[39]  D. E Cohen,et al.  On the laws of a metabelian variety , 1967 .

[40]  Ivar Ugi,et al.  Die Vandermondesche Determinante als Näherungsansatz für eine Chiralitätsbeobachtung, ihre Verwendung in der Stereochemie und zur Berechnung der optischen Aktivität , 1967 .

[41]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .