Equivariant Gröbner bases
暂无分享,去创建一个
[1] U. Nagel,et al. Equivariant Hilbert Series of Monomial Orbits , 2016, 1608.06372.
[2] Christopher J. Hillar,et al. Corrigendum to "Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals" [J. Symb. Comput. 50(March 2013) 314-334] , 2016, J. Symb. Comput..
[3] Robert Krone,et al. Equivariant Gröbner Bases of Symmetric Toric Ideals , 2016, ISSAC.
[4] Shuhong Gao,et al. A new framework for computing Gröbner bases , 2015, Math. Comput..
[5] Steven V. Sam,et al. Gröbner methods for representations of combinatorial categories , 2014, 1409.1670.
[6] Uwe Nagel,et al. Equivariant Hilbert Series in non-Noetherian Polynomial Rings , 2015, 1510.02757.
[7] D. Erman,et al. Asymptotics of random Betti tables , 2012, 1207.5467.
[8] J. Draisma,et al. Finiteness results for Abelian tree models , 2012, 1207.1282.
[9] J. Draisma,et al. Plücker varieties and higher secants of Sato's Grassmannian , 2014, 1402.1667.
[10] Anton Leykin,et al. Equivariant lattice generators and Markov bases , 2014, ISSAC.
[11] Jan Draisma,et al. Bounded-rank tensors are defined in bounded degree , 2011, 1103.5336.
[12] Jan Draisma,et al. Noetherianity up to Symmetry , 2013, 1310.1705.
[13] Anton Leykin,et al. Noetherianity for infinite-dimensional toric varieties , 2013, 1306.0828.
[14] Abraham Martín del Campo,et al. Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals , 2011, J. Symb. Comput..
[15] O. Randal-Williams. HOMOLOGICAL STABILITY FOR UNORDERED CONFIGURATION SPACES , 2011, 1105.5257.
[16] Thomas Church. Homological stability for configuration spaces of manifolds , 2011, 1103.2441.
[17] R. Lazarsfeld,et al. Asymptotic syzygies of algebraic varieties , 2011, 1103.0483.
[18] Andries E. Brouwer,et al. Equivariant Gröbner bases and the Gaussian two-factor model , 2011, Math. Comput..
[19] ANDREW SNOWDEN. SYZYGIES OF SEGRE EMBEDDINGS AND ∆-MODULES , 2011 .
[20] Seth Sullivant,et al. Finite Groebner bases in infinite dimensional polynomial rings and applications , 2009, 0908.1777.
[21] Andrew Snowden,et al. The equations for the moduli space of $n$ points on the line , 2009 .
[22] A. I. Shirshov. Some Algorithmic Problems for ε-algebras , 2009 .
[23] Jan Draisma,et al. Finiteness for the k-factor model and chirality varieties , 2008, 0811.3503.
[24] Matthias Aschenbrenner,et al. An algorithm for finding symmetric Grobner bases in infinite dimensional rings , 2008, ISSAC '08.
[25] Jan Draisma,et al. On the ideals of equivariant tree models , 2007, 0712.3230.
[26] S. Sullivant,et al. A finiteness theorem for Markov bases of hierarchical models , 2004, J. Comb. Theory, Ser. A.
[27] Justin A James. Some decision problems in group theory , 2006 .
[28] M. Drton,et al. Algebraic factor analysis: tetrads, pentads and beyond , 2005, math/0509390.
[29] Matthias Aschenbrenner,et al. Finite generation of symmetric ideals , 2004, math/0411514.
[30] C. Hillar,et al. Polynomial recurrences and cyclic resultants , 2004, math/0411414.
[31] Michael Abramson,et al. Contributions to constructive polynomial ideal theory XXIII: forgotten works of Leningrad mathematician N. M. Gjunter on polynomial ideal theory , 2003, SIGS.
[32] A. Takemura,et al. Minimal Basis for a Connected Markov Chain over 3 × 3 ×K Contingency Tables with Fixed Two‐Dimensional Marginals , 2003 .
[33] B. Sturmfels,et al. Higher Lawrence configurations , 2002, J. Comb. Theory, Ser. A.
[34] P. Diaconis,et al. Algebraic algorithms for sampling from conditional distributions , 1998 .
[35] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .
[36] Daniel E. Cohen,et al. Closure Relations, Buchberger's Algorithm, and Polynomials in Infinitely Many Variables , 1987, Computation Theory and Logic.
[37] G. Bergman. The diamond lemma for ring theory , 1978 .
[38] L. A. Bokut,et al. Embeddings into simple associative algebras , 1976 .
[39] D. E Cohen,et al. On the laws of a metabelian variety , 1967 .
[40] Ivar Ugi,et al. Die Vandermondesche Determinante als Näherungsansatz für eine Chiralitätsbeobachtung, ihre Verwendung in der Stereochemie und zur Berechnung der optischen Aktivität , 1967 .
[41] H. Hironaka. Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .