Colloquium : Quantum limits to the energy resolution of magnetic field sensors

The energy resolution per bandwidth $E_R$ is a figure of merit that combines the field resolution, bandwidth or duration of the measurement, and size of the sensed region. Several different dc magnetometer technologies approach $E_R = \hbar$, while to date none has surpassed this level. This suggests a technology-spanning quantum limit, a suggestion that is strengthened by model-based calculations for nitrogen-vacancy centres in diamond, for superconducting quantum interference device (SQUID) sensors, and for some optically-pumped alkali-vapor magnetometers, all of which predict a quantum limit close to $E_R = \hbar$. Here we review what is known about energy resolution limits, with the aim to understand when and how $E_R$ is limited by quantum effects. We include a survey of reported sensitivity versus size of the sensed region for more than twenty magnetometer technologies, review the known model-based quantum limits, and critically assess possible sources for a technology-spanning limit, including zero-point fluctuations, magnetic self-interaction, and quantum speed limits. Finally, we describe sensing approaches that appear to be unconstrained by any of the known limits, and thus are candidates to surpass $E_R = \hbar$.

[1]  H. Meyer,et al.  Field-stable SQUID magnetometer with sub-fT Hz − 1/2 resolution based on sub-micrometer cross-type Josephson tunnel junctions , 2011 .

[2]  Paola Cappellaro,et al.  Quantum Metrology with Strongly Interacting Spin Systems , 2019, 1907.10066.

[3]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[4]  H. Meyer,et al.  Nearly quantum limited nanoSQUIDs based on cross-type Nb/AlOx/Nb junctions , 2017, 1705.06166.

[5]  S. Massar,et al.  Measuring energy, estimating Hamiltonians, and the time-energy uncertainty relation , 2001, quant-ph/0110004.

[6]  D. Budker,et al.  Spin-Exchange-Relaxation-Free Magnetometry with Cs Vapor , 2007, 0708.1012.

[7]  A P Chikkatur,et al.  Direct nondestructive imaging of magnetization in a spin-1 Bose-Einstein gas. , 2005, Physical review letters.

[8]  M. Volwerk,et al.  Cassini in situ observations of long-duration magnetic reconnection in Saturn’s magnetotail , 2015, Nature Physics.

[9]  N. Bar-Gill,et al.  Hamiltonian engineering of general two-body spin-1/2 interactions , 2019, Physical Review Research.

[10]  F. Schmidt-Kaler,et al.  Entanglement-based dc magnetometry with separated ions , 2017, 1704.01793.

[11]  M W Mitchell,et al.  Spin-squeezing of a large-spin system via QND measurement DRAFT , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[12]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[13]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[14]  Leif Grönberg,et al.  Kinetic inductance magnetometer , 2014, Nature Communications.

[15]  D. Stamper-Kurn,et al.  High-resolution magnetometry with a spinor Bose-Einstein condensate. , 2007, Physical review letters.

[16]  L. D. Turner,et al.  Continuous Faraday measurement of spin precession without light shifts , 2017 .

[17]  M. Sadgrove,et al.  Spin-echo-based magnetometry with spinor Bose-Einstein condensates , 2013, 1306.1011.

[18]  M. Romalis,et al.  Subfemtotesla scalar atomic magnetometry using multipass cells. , 2012, Physical review letters.

[19]  Z. Grujic,et al.  Magnetic Resonance Based Atomic Magnetometers , 2017 .

[20]  J. Bird,et al.  A review of progress in the physics of open quantum systems: theory and experiment , 2015, Reports on progress in physics. Physical Society.

[21]  Hans J. Bremermann,et al.  Minimum energy requirements of information transfer and computing , 1982 .

[22]  L. D. Turner,et al.  Magnetic tensor gradiometry using Ramsey interferometry of spinor condensates , 2014, 1408.0944.

[23]  D. Viehland,et al.  Ultralow equivalent magnetic noise in a magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure , 2012 .

[24]  B. Wagner,et al.  MEMS magnetic field sensor based on magnetoelectric composites , 2012 .

[25]  D. Robbes,et al.  Highly sensitive magnetometers—a review , 2006 .

[26]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[27]  G. Vasilakis,et al.  Low-noise high-density alkali-metal scalar magnetometer , 2009 .

[28]  Göran Lindblad,et al.  Non-equilibrium entropy and irreversibility , 1983 .

[29]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[30]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[31]  J. Bekenstein Entropy content and information flow in systems with limited energy , 1984 .

[32]  M. Mitchell,et al.  Multi-second magnetic coherence in a single domain spinor Bose–Einstein condensate , 2017, 1707.09607.

[33]  IEEE Transactions on Magnetics , 2022 .

[34]  G. B. Lesovik,et al.  Quantum-enhanced magnetometry by phase estimation algorithms with a single artificial atom , 2018, npj Quantum Information.

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  S. Gleyzes,et al.  High-sensitivity magnetometry with a single atom in a superposition of two circular Rydberg states , 2019, Nature Physics.

[37]  John Clarke,et al.  QUANTUM NOISE THEORY FOR THE RESISTIVELY SHUNTED JOSEPHSON JUNCTION , 1980 .

[38]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[39]  J. Bekenstein Energy Cost of Information Transfer , 1981 .

[40]  D. Drung,et al.  An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device , 2017, 1702.05428.

[41]  Philipp Treutlein,et al.  Quantum metrology with a scanning probe atom interferometer. , 2013, Physical review letters.

[42]  M. Schiek,et al.  High-$T_{\rm c}$ DC SQUIDs for Magnetoencephalography , 2013, IEEE Transactions on Applied Superconductivity.

[43]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[44]  Dirk Englund,et al.  Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide , 2014, Nature Physics.

[45]  Jonas Zmuidzinas,et al.  Kinetic Inductance Parametric Up-Converter , 2016 .

[46]  Igor Savukov,et al.  Spin Exchange Relaxation Free (SERF) Magnetometers , 2017 .

[47]  Bingyan Chen,et al.  Ultra-sensitive graphene Hall elements , 2014 .

[48]  Svenja Knappe,et al.  Subpicotesla atomic magnetometry with a microfabricated vapour cell , 2007 .

[49]  Thomas G. Walker,et al.  129Xe-Xe molecular spin relaxation. , 2002, Physical review letters.

[50]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[51]  Edward H. Chen,et al.  Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. , 2014, Nano letters.

[52]  Thomas G. Walker,et al.  Comment on "New limit on Lorentz-invariance- and CPT-violating neutron spin interactions using a free-spin-precession (3)He-(129)Xe comagnetometer". , 2014, Physical review letters.

[53]  D. Budker,et al.  Magnetometry with Nitrogen-Vacancy Centers in Diamond , 2017 .

[54]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[55]  Aditya Shreyas Kher,et al.  Superconducting Nonlinear Kinetic Inductance Devices , 2017 .

[56]  A. Oral,et al.  Room-temperature scanning Hall probe microscope (RT-SHPM) imaging of garnet films using new high-performance InSb sensors , 2002 .

[57]  Warwick P. Bowen,et al.  Ultrasensitive optical magnetometry at the microscale , 2021, 2104.05179.

[58]  Claude Fermon,et al.  Femtotesla Magnetic Field Measurement with Magnetoresistive Sensors , 2004, Science.

[59]  V. Acosta Optical Magnetometry with Nitrogen-Vacancy Centers in Diamond - eScholarship , 2011 .

[60]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[61]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[62]  G. Burr,et al.  Journal of Applied Physics , 2004 .

[63]  D. Hume,et al.  Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. , 2014, Physical review letters.

[64]  戸高 法文,et al.  Geochemistry , 2019, Nature.

[65]  D. Ralph,et al.  Scanning SQUID susceptometers with sub-micron spatial resolution. , 2016, The Review of scientific instruments.

[66]  B. Myers,et al.  Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond , 2017, Nature Communications.

[67]  Klaus Mølmer,et al.  Entanglement and extreme spin squeezing. , 2000, Physical review letters.

[68]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[69]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[70]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[71]  S. Bending,et al.  Local magnetic probes of superconductors , 1999 .

[72]  U. Andersen,et al.  Pump-Enhanced Continuous-Wave Magnetometry using Nitrogen-Vacancy Ensembles , 2017, 1707.00502.

[73]  Ling Hao,et al.  Miniature dc SQUID devices for the detection of single atomic spin-flips , 2002 .

[74]  E. A. Lima,et al.  Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields , 2014 .

[75]  John L. Crassidis,et al.  Sensors and actuators , 2005, Conference on Electron Devices, 2005 Spanish.

[76]  Number-unconstrained quantum sensing , 2017, 1704.01293.

[77]  Suzanne A. McEnroe,et al.  Magnetic field microscopy of rock samples using a giant magnetoresistance–based scanning magnetometer , 2009 .

[78]  R. Wakai,et al.  Signal and white noise properties of edge junction dc SQUID's , 1988 .

[79]  Petr I. Nikitin,et al.  Epitaxial yttrium iron garnet film as an active medium of an even-harmonic magnetic field transducer , 2003 .

[80]  David G. Cory,et al.  Engineering effective Hamiltonians , 2019, New Journal of Physics.

[81]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[82]  Chih-Cheng Lu,et al.  Enhancement in Sensitivity Using Multiple Harmonics for Miniature Fluxgates , 2012, IEEE Transactions on Magnetics.

[83]  J. Kawai,et al.  Scanning SQUID microscope system for geological samples: system integration and initial evaluation , 2016, Earth, Planets and Space.

[84]  Svenja Knappe,et al.  Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique , 2007 .

[85]  Soonwon Choi,et al.  Dynamical Engineering of Interactions in Qudit Ensembles. , 2017, Physical review letters.

[86]  John Clarke,et al.  QUANTUM NOISE THEORY FOR THE dc SQUID , 1981 .

[87]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[88]  A. Yacoby,et al.  A robust, scanning quantum system for nanoscale sensing and imaging , 2011, 1108.4437.

[89]  John Clarke,et al.  Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz , 2001 .

[90]  C. Jia,et al.  Meandering of the grain boundary and d-wave effects in high-Tc bicrystal Josephson junctions , 2006 .

[91]  Svenja Knappe,et al.  Microfabricated optically-pumped magnetometers , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[92]  M. Schilling,et al.  Low-frequency noise and linearity of a YBa2Cu3O7 dc superconducting quantum interference device magnetometer in static magnetic fields , 1999 .

[93]  F. Giazotto,et al.  SQUIPT - Superconducting Quantum Interference Proximity Transistor , 2009, 0909.3806.

[94]  D. Bohm,et al.  Time in the Quantum Theory and the Uncertainty Relation for Time and Energy , 1961 .

[95]  Thomas G. Walker,et al.  Optically polarized 3He. , 2016, Reviews of modern physics.

[96]  D. Mailly,et al.  Sensitivity and noise of micro-Hall magnetic sensors based on InGaAs quantum wells , 2016 .

[97]  I. Sauers,et al.  Electrical Insulation Characteristics of Glass Fiber Reinforced Resins , 2009, IEEE Transactions on Applied Superconductivity.

[98]  J. Kawai,et al.  SQUID Microscope With Hollow-Structured Cryostat for Magnetic Field Imaging of Room Temperature Samples , 2016, IEEE Transactions on Applied Superconductivity.

[99]  M. Romalis,et al.  Tunable atomic magnetometer for detection of radio-frequency magnetic fields. , 2005, Physical review letters.

[100]  Young Jin Kim,et al.  Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer , 2016, Scientific Reports.

[101]  J. Schmiedmayer,et al.  Solid-state electron spin lifetime limited by phononic vacuum modes , 2017, Nature Materials.

[102]  Schiffer Quantum limit for information transmission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[103]  D. Budker,et al.  Precessing Ferromagnetic Needle Magnetometer. , 2016, Physical review letters.

[104]  E. A. Lima,et al.  High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications , 2005 .

[105]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[106]  Jörg Schmiedmayer,et al.  Bose–Einstein condensates: Microscopic magnetic-field imaging , 2005, Nature.

[107]  M. Lukin,et al.  Enhanced solid-state multispin metrology using dynamical decoupling , 2012, 1201.5686.

[108]  Caroline A. Ross,et al.  Structural and magnetic characterization of the intermartensitic phase transition in NiMnSn Heusler alloy ribbons , 2013 .

[109]  John Clarke,et al.  dc SQUID: Noise and optimization , 1977 .

[110]  Y. Avishai,et al.  Dynamics of a Magnetic Needle Magnetometer: Sensitivity to Landau-Lifshitz-Gilbert Damping. , 2018, Physical review letters.

[111]  Probing electric and magnetic vacuum fluctuations with quantum dots. , 2014, Physical review letters.

[112]  I. Lesanovsky,et al.  Sensing electric and magnetic fields with Bose-Einstein condensates , 2006 .

[113]  H. Meyer,et al.  Thin-Film-Based Ultralow Noise SQUID Magnetometer , 2016, IEEE Transactions on Applied Superconductivity.

[114]  Nuclear spin relaxation of $^{129}$Xe due to persistent xenon dimers , 2006 .

[115]  J. Bekenstein Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.

[116]  Dietmar Drung,et al.  THEORY FOR THE MULTILOOP DC SUPERCONDUCTING QUANTUM INTERFERENCE DEVICE MAGNETOMETER AND EXPERIMENTAL VERIFICATION , 1995 .

[117]  M. Mitchell,et al.  Real-time vector field tracking with a cold-atom magnetometer , 2013, 1303.2312.

[118]  David J. Wineland,et al.  Surface science for improved ion traps , 2013 .

[119]  Jean-Daniel Bancal,et al.  Bell correlations in a Bose-Einstein condensate , 2016, Science.

[120]  J. Schmiedmayer,et al.  Optimized magneto-optical trap for experiments with ultracold atoms near surfaces , 2003, cond-mat/0311475.

[121]  Barton,et al.  Gaseous 3He-3He magnetic dipolar spin relaxation. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[122]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[123]  Cavity enhanced atomic magnetometry , 2015, Scientific reports.

[124]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[125]  C. Deng,et al.  Ultrasensitive magnetic field detection using a single artificial atom , 2012, Nature Communications.

[126]  B. Myers,et al.  Double-Quantum Spin-Relaxation Limits to Coherence of Near-Surface Nitrogen-Vacancy Centers. , 2016, Physical review letters.

[127]  Svenja Knappe,et al.  Chip-scale atomic magnetometer , 2004 .

[128]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[129]  Svenja Knappe,et al.  Femtotesla atomic magnetometry in a microfabricated vapor cell. , 2010, Optics express.

[130]  S. Shikata,et al.  High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. , 2012, Physical review letters.

[131]  G. Burkard,et al.  Direct sampling of electric-field vacuum fluctuations , 2015, Science.

[132]  M. Huber,et al.  Scanning nano-SQUID with single electron spin sensitivity , 2013, 1308.0694.

[133]  R. Ingarden,et al.  Information Dynamics and Open Systems: Classical and Quantum Approach , 1997 .

[134]  J. Clarke,et al.  Superconducting quantum interference device with very low magnetic flux noise energy , 1982 .

[135]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[136]  M. Lewenstein,et al.  Detecting non-locality in multipartite quantum systems with two-body correlation functions , 2013, 1306.6860.

[137]  Joseph C. Farmer,et al.  38 , 2006, The Hatak Witches.

[138]  Risto J. Ilmoniemi,et al.  SQUID magnetometers for low-frequency applications , 1989 .

[139]  R. Wald Entropy and black-hole thermodynamics , 1979 .

[140]  Junichi Isoya,et al.  Subpicotesla Diamond Magnetometry , 2014, 1411.6553.

[141]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[142]  J. Kirtley Fundamental studies of superconductors using scanning magnetic imaging , 2010, 1008.3179.

[143]  Frank Boers,et al.  Magnetoencephalography using a Multilayer hightc DC SQUID Magnetometer , 2012 .

[144]  E. B. Davies Quantum theory of open systems , 1976 .

[145]  A Retzker,et al.  Ultrasensitive Magnetometer using a Single Atom. , 2014, Physical review letters.

[146]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[147]  C. Helstrom Quantum detection and estimation theory , 1969 .

[148]  Samuel L Braunstein,et al.  Exponentially enhanced quantum metrology. , 2008, Physical review letters.

[149]  Soonwon Choi,et al.  Robust Dynamic Hamiltonian Engineering of Many-Body Spin Systems , 2019, 1907.03771.

[150]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[151]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[152]  Alicia J. Koll'ar,et al.  Scanning Quantum Cryogenic Atom Microscope , 2016, 1608.06922.

[153]  P. Carelli,et al.  Low‐noise tunnel junction dc SQUID’s , 1981 .

[154]  Ronald L. Walsworth,et al.  Optical magnetic detection of single-neuron action potentials using quantum defects in diamond , 2016, Proceedings of the National Academy of Sciences.

[155]  W. Gawlik,et al.  Nonlinear Magneto-Optical Rotation Magnetometers , 2017 .

[156]  D. Awschalom,et al.  Low‐noise modular microsusceptometer using nearly quantum limited dc SQUIDs , 1988 .